Korean J. Math. Vol. 32 No. 1 (2024) pp.97-107
DOI: https://doi.org/10.11568/kjm.2024.32.1.97

Factorization properties on the composite Hurwitz rings

Main Article Content

Dong Yeol Oh

Abstract

Let AB be an extension of integral domains with characteristic zero. Let H(A,B) and h(A,B) be rings of composite Hurwitz series and composite Hurwitz polynomials, respectively. We simply call H(A,B) and h(A,B) composite Hurwitz rings of A and B. In this paper, we study when H(A,B) and h(A,B) are unique factorization domains (resp., GCD-domains, finite factorization domains, bounded factorization domains).



Article Details

Supporting Agencies

This study was supported by research fund from Chosun University (F206889001).

References

[1] D.D. Anderson, D.F. Anderson, and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1) (1990), 1–19. https://doi.org/10.1016/0022-4049(90)90074-R Google Scholar

[2] D.D. Anderson, D.F. Anderson, and M. Zafrullah, Factorization in integral domains II, J. Algebra 152 (1) (1992), 78–93. https://doi.org/10.1016/0021-8693(92)90089-5 Google Scholar

[3] D.D. Anderson and B. Mullins, Finite factorization domains, Proc. Amer. Math. Soc. 124 (2) (1996), 389–396. https://doi.org/10.1090/S0002-9939-96-03284-4 Google Scholar

[4] D.F. Anderson and D. Nour El Abidine, Factorization in integral domains III, J. Pure Appl. Algebra 135 (2) (1999), 107–127. https://doi.org/10.1016/S0022-4049(97)00147-3 Google Scholar

[5] D.F. Anderson and D. Nour El Abidine, The A + XB[X] and A + XB[X] constructions from GCD-domains, J. Pure Appl. Algebra 159 (1) (2001), 15–24. Google Scholar

[6] A. Benhissi, Ideal structure of Hurwitz series ring, Contrib. Alg. Geom. 48 (1) (1997), 251–256. Google Scholar

[7] A. Benhissi and F. Koja, Basic properties of Hurwitz series rings, Ric. Mat. 61 (2) (2012), 255–273. https://doi.org/10.1007/s11587-012-0128-2 Google Scholar

[8] P.M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (2) (1968), 251– 264. https://doi.org/10.1017/S0305004100042791 Google Scholar

[9] P.M. Cohn, Unique factorization domains, Amer. Math. Monthly 80 (1) (1973), 1–18. https://doi.org/10.2307/2319253 Google Scholar

[10] T. Dumitrescu, S.O. Ibrahim Al-Salihi, N. Radu, and T. Shah Some factorization properties of composite domains A + XB[X] and A + XB[X], Comm. Algebra 28 (3) (2000), 1125–1139. https://doi.org/10.1080/00927870008826885 Google Scholar

[11] R.M. Fossum, The Divisor Class Group of a Krull Domain, Springer, New York, 1973. Google Scholar

[12] R. Gilmer, Multiplicative Ideal Theory, Queen’s Papers in Pure Appl. Math., vol. 90, Queen’s University, Kingston, Ontario, 1992. Google Scholar

[13] A. Grams, Atomic domains and the ascending chain condition for principal ideals, Proc. Cambridge Philos. Soc. 75 (3) (1974), 321–329. https://doi.org/10.1017/S0305004100048532 Google Scholar

[14] S. Hizem, Chain conditions in rings of the form A + XB[X] and A + XI[X], in: M. Fontana, et al. (Eds.), Commutative Algebra and Its Applications: Proceedings of the Fifth International Fez Conference on Commutative Algebra and Its Applications, Fez, Morocco, W. de Gruyter Publisher, Berlin, 2008, 259–274. Google Scholar

[15] S. Hizem and A. Benhissi, When is A + XB[X] Noetherian?, C. R. Acad. Sci. Paris 340 (1) (2005), 5–7. https://doi.org/10.1016/j.crma.2004.11.017 Google Scholar

[16] I. Kaplansky, Commutative Rings, Rev. ed., Univ. of Chicago Press, Chicago, 1974. Google Scholar

[17] W. F. Keigher, Adjunctions and comonads in differential algebra, Pacific J. Math. 59 (1) (1975), 99–112. https://doi.org/10.2140/pjm.1975.59.99 Google Scholar

[18] W. F. Keigher, On the ring of Hurwitz series, Comm. Algebra 25 (6) (1997), 1845–1859. https://doi.org/10.1080/00927879708825957 Google Scholar

[19] J. W. Lim and D. Y. Oh, Composite Hurwitz rings satisfying the ascending chain condition on principal ideals, Kyungpook Math. J. 56 (4) (2016), 1115–1123. https://doi.org/10.5666/KMJ.2016.56.4.1115 Google Scholar

[20] J. W. Lim and D. Y. Oh, Chain conditions on composite Hurwitz rings, Open Math. 15 (2017), 1161–1170. https://doi.org/10.1515/math-2017-0097 Google Scholar

[21] Z. Liu, Hermite and PS-rings of Hurwitz series, Comm. Algebra 28 (1) (2000), 299–305. https://doi.org/10.1080/00927870008841073 Google Scholar

[22] P. Samuel, Lectures on unique factorization domains (notes by Pavaman Murthy), Tata Institute for Fundamental Research Lecture 30 (Tata Inst. Fund. Res.), Bombay, 1964. Google Scholar

[23] P. Samuel, Unique factorization, Amer. Math. Monthly 75 (9) (1968), 945–952. https://doi.org/10.1080/00029890.1968.11971097 Google Scholar

[24] P. T. Toan and B. G. Kang, Krull dimension and unique factorization in Hurwitz polynomial rings , Rocky Mountain J. Math. 47 (4) (2017) 1317–1332. https://doi.org/10.1216/RMJ-2017-47-4-1317 Google Scholar