Korean J. Math. Vol. 32 No. 1 (2024) pp.121-135
DOI: https://doi.org/10.11568/kjm.2024.32.1.121

Certain aspects of rough ideal statistical convergence on neutrosophic normed spaces

Main Article Content

Reena Antal
Meenakshi Chawla
Vijay Kumar

Abstract

In this paper, we have presented rough ideal statistical convergence of sequence on neutrosophic normed spaces as a significant convergence criterion. As neutrosophication can handle partially dependent components, partially independent components and even independent components involved in real-world problems. By examining some properties related to rough ideal convergence in these spaces we have established some equivalent conditions on the set of ideal statistical limit points for rough ideal statistically convergent sequences.



Article Details

References

[1] R. Antal, M. Chawla, V. Kumar, Rough statistical convergence in intutionistic fuzzy normed spaces, Filomat, 35 (13) (2021), 4405–4416. https://doi.org/10.2298/FIL2113405A Google Scholar

[2] R. Antal, M. Chawla, V. Kumar, Rough statistical convergence in probabilistic normed spaces, Thai J. Math. 20 (4) (2023), 1707–1719. Google Scholar

[3] M. Arslan, E. Du ̈ndar, On rough convergence in 2-normed spaces and some properties, Filomat, 33 (16) (2019), 5077–5086. https://doi.org/10.2298/FIL1916077A Google Scholar

[4] S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optimiz. 29 (3-4) (2008), 291–303. https://doi.org/10.1080/01630560802001064+ Google Scholar

[5] S. Aytar, Rough statistical cluster points, Filomat, 31 (16) (2017), 5295–5304. https://doi.org/10.2298/FIL1716295A Google Scholar

[6] A. K. Banerjee, A. Paul, Rough I-convergence in cone metric spaces, J. Math. Comput. Sci. 12 (2022). Google Scholar

[7] T. Bera , N. K. Mahapatra, On neutrosophic soft linear spaces, Fuzzy Inf. Eng. 9 (3) (2017), 299–324. https://doi.org/10.1016/j.fiae.2017.09.004 Google Scholar

[8] S. Debnath, D. Rakshit, Rough convergence in metric spaces, New Trends in Analysis and Interdisciplinary Applications (2017), 449–454. https://doi.org/10.1007/978-3-319-48812-7_57 Google Scholar

[9] S. Debnath, N. Subramanian, Rough statistical convergence on triple sequences, Proyecciones (Antofagasta), 36 (4) (2017), 685–699. http://dx.doi.org/10.4067/S0716-09172017000400685 Google Scholar

[10] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (3-4) (1951), 241–244. Google Scholar

[11] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313. https://doi.org/10.1524/anly.1985.5.4.301 Google Scholar

[12] V. A. Khan , M. D. Khan, M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets and Systems, 42 (2021), 239–252. https://digitalrepository.unm.edu/nss_journal/vol42/iss1/15 Google Scholar

[13] V. A. Khan , M. D. Khan, M. Ahmad, Some Results of Neutrosophic Normed Spaces via Fibonacci Matrix, Infinite Study, 2021. Google Scholar

[14] M. Kiri ̧sci, N. S ̧im ̧sek, Neutrosophic metric spaces, Math. Sci., 14 (2020), 241–248. https://doi.org/10.1007/s40096-020-00335-8 Google Scholar

[15] M. Kiri ̧sci, N. S ̧im ̧sek, Neutrosophic normed spaces and statistical convergence, J. Anal., 28(4) (2020), 1059–1073. https://doi.org/10.1007/s41478-020-00234-0 Google Scholar

[16] O ̈. Ki ̧si, Convergence methods for double sequences and applications in neutrosophic normed spaces, Soft Computing Techniques in Engineering, Health, Mathematical and Social Sciences, 2021, 137–154, CRC Press. Google Scholar

[17] O ̈. Ki ̧si, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. FuzzySyst. 41 (2) (2021), 2581–2590. https://doi.org/10.3233/JIFS-201568 Google Scholar

[18] O ̈. Ki ̧si, E. Du ̈ndar, Rough I2-lacunary statistical convergence of double sequences, J. Inequal Appl., 1 (2018), 1–16. https://doi.org/10.1186/s13660-018-1831-7 Google Scholar

[19] Ki ̧siO ̈.,Gu ̈rdalV.Ontripledifferencesequencesofrealnumbersinneutrosophicnormedspaces, Commun. Adv. Math. Sci. 5 (1) (2022), 35–45. https://doi.org/10.33434/cams.1025928 Google Scholar

[20] P. Kostyrko, T. Sˇal ́at, W. Wilczyn ́ski, I-convergence, Real analysis exchange, 2000, 669–685. Google Scholar

[21] P. Malik, M. Maity, On rough statistical convergence of double sequences in normed linear spaces, Afr. Mat., 27 (1-2) (2016), 141–148. https://doi.org/10.1007/s13370-015-0332-9 Google Scholar

[22] H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optimiz., 22 (1-2) (2001), 199–222. https://doi.org/10.1081/NFA-100103794 Google Scholar

[23] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (3) (2005), 287. Google Scholar

[24] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued neutrosophic sets. Infinite study, 2010. Google Scholar

[25] J. Ye, A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, J. Intell. Fuzzy Syst. 26 (5) (2014), 2459–2466. https://doi.org/10.3233/IFS-130916 Google Scholar