Korean J. Math. Vol. 32 No. 1 (2024) pp.183-193
DOI: https://doi.org/10.11568/kjm.2024.32.1.183

Application of Gegenbauer polynomials to certain classes of bi-univalent functions of order $\nu+i\varsigma$

Main Article Content

Omar Alnajar
Ala Amourah
Maslina Darus


In this paper, a new class of bi-univalent functions that are described by Gegenbauer polynomials is presented. We obtain the estimates of the Taylor-Maclaurin coefficients $ \left\vert m_{2}\right\vert $ and $\left\vert m_{3}\right\vert $ for each function in this class of bi-univalent functions. In addition, the Fekete--Szeg\"{o} problems function new are also studied.

Article Details


[1] A. Amourah, B. A. Frasin, M. Ahmad and F. Yousef, Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions, Symmetry. 14 (1) (2022), 147. https://dx.doi.org/10.3390/sym14010147 Google Scholar

[2] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy and T. Al-Hawary, Bi-Bazileviˇc functions of order θ + iδ associated with (p, q)−Lucas polynomials, AIMS Mathematics. 6 (5) (2021), 4296–4305. Google Scholar

[3] A. Amourah, T. Al-Hawary and B. A. Frasin, Application of Chebyshev polynomials to certain class of bi-Bazileviˇc functions of order α + iβ, Afr. Mat. (2021), 1–8. Google Scholar

[4] A. Amourah, B.A. Frasin and T. Abdeljawad, Fekete-Szeg ̈o inequality for analytic and biunivalent functions subordinate to Gegenbauer polynomials, J. Funct. Spaces. (2021), 1–7. Google Scholar

[5] A. Amourah, O. Alnajar, M. Darus, A. Shdouh and O. Ogilat, Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials, Mathematics. 11 (8) (2023), 1799. https://dx.doi.org/10.3390/math11081799 Google Scholar

[6] A. Legendre, Recherches sur laattraction des sph ́eroides homog ́enes, M ́emoires pr ́esentes par divers savants a laAcad ́emie des Sciences de laInstitut de France, Paris. 10 (1785), 411–434. Google Scholar

[7] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573. https://dx.doi.org/10.1016/j.aml.2011.03.048 Google Scholar

[8] B.A. Frasin, S.R. Swamy and J. Nirmala, Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified Sigmoid activation function, Afrika Matematika. 32 (2021), 631–643. Google Scholar

[9] E. Kobald, J. A. Gmeiner and O. Stolz, Leopold Gegenbauer, (1904), 3–10. Google Scholar

[10] F. Yousef, S. Alroud and M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Bolet ́ın de la Sociedad Matem ́atica Mexicana. (2019), 1–11. Google Scholar

[11] F. Yousef, S. Alroud and M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Anal. Math. Physics. 11 (2021), 1–12. Google Scholar

[12] F. Yousef, T. Al-Hawary and G. Murugusundaramoorthy, Fekete-Szeg ̈o functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator, Afrika Matematika. 30 (2019), 495–503. Google Scholar

[13] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat. 28 (2017), 1357–1366. Google Scholar

[14] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain sub-classes of bi-univalent function, Abst. Appl. Anal. (2013). http://dx.doi.org/10.1155/2013/573017 Google Scholar

[15] H. M. Srivastava, S ̧. Altınkaya and S. Yal ̧cın, Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iranian Journal of Science and Technology, Transactions. A. Science. 43 (4) (2019), 1873–1879. Google Scholar

[16] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied mathematics letters. 23 (10) (2010), 1188–1192. http://dx.doi.org/10.1016/j.aml.2010.05.009 Google Scholar

[17] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, 2013. Certain subclasses of biunivalent functions associated with the Hohlov operator Global J. Math. Anal. 1 (2) (2013), 67-73. Google Scholar

[18] H. M. Srivastava and D. Bansal, Coefficient estimates for a class of analytic and bi-univalent functions, Journal of the Egyptian Mathematical Society. 23 (2) (2015), 242-246. http://dx.doi.org/10.1016/j.joems.2014.04.002 Google Scholar

[19] H. O. Guney, G. Murugusundaramoorthy and Sokol, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Universitatis Sapientiae, Mathematica. 10 (2018), 70-84. https://dx.doi.org/10.2478/ausm-2018-0006 Google Scholar

[20] H. U .Rehman, M. Darus and J. Salah, Generalizing Certain Analytic Functions Correlative to the n-th Coefficient of Certain Class of Bi-Univalent Functions, Journal of Mathematics. (2021), 1–14. https://dx.doi.org/10.1155/2021/6621315 Google Scholar

[21] M. Fekete and G. Szeg ̈o, Eine Bemerkung A ̃ber ungerade schlichte Funktionen, J. Lond. Math. Soc. 1 (2) (1933), 85–89. Google Scholar

[22] M. Lewin, On a Coefficient problem for bi-univalent functions, Proc Amer Math Soc. 18 (1967), 63–68. Google Scholar

[23] N. M. Atakishiyev, M. Rahman and S . K. Suslov, On classical orthogonal polynomials, Constructive Approximation. 11 (1995), 181–226. Google Scholar

[24] O. Alnajar, A. Amourah and M. Darus, The Characteristics of Inclusion Pertaining to Univalent Functions Associated with Bell Distribution Functions, Int. J. Open Problems Complex Analysis. 15 (2) (2023), 46–61. https://www.i-csrs.org/Volumes/ijopca/vol.15/2.5.pdf Google Scholar

[25] S. Porwal and M. Darus, On a new subclass of bi-univalent functions, Journal of the Egyptian Mathematical Society. 21 (3) (2013), 190-193. http://dx.doi.org/10.1016/j.joems.2013.02.007 Google Scholar

[26] S. Altınkaya and S. Yalcin, On the ( p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class, Boletin de la Sociedad Matematica Mexicana. 25 (3) (2018), 567–575. Google Scholar

[27] V. Kumar, N. E. Cho, V. Ravichandran and H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Mathematica Slovaca. 69 (5) (2019), 1053– 1064. http://dx.doi.org/10.1515/ms-2017-0289 Google Scholar

[28] Z. Peng, G. Murugusundaramoorthy and T. Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, J. Complex Analysis. (2014). http://dx.doi.org/10.1155/2014/693908 Google Scholar