Korean J. Math. Vol. 32 No. 2 (2024) pp.297-314
DOI: https://doi.org/10.11568/kjm.2024.32.2.297

A study on Milne-type inequalities for a specific fractional integral operator with applications

Main Article Content

Arslan Munir
Ather Qayyum
Laxmi Rathour
Gulnaz Atta
Siti Suzlin Supadi
Usman Ali

Abstract

Fractional integral operators have been studied extensively in the last few decades by various mathematicians, because it plays a vital role in the developments of new inequalities. The main goal of the current study is to establish some new Milne-type inequalities by using the special type of fractional integral operator i.e Caputo Fabrizio operator. Additionally, generalization of these developed Milne-type inequalities for $s$-convex function are also given. Furthermore, applications to some special means, quadrature formula, and $q$-digamma functions are presented.



Article Details

References

[1] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. Google Scholar

[2] V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002) 803–806. https://doi.org/10.1115/1.1478062 Google Scholar

[3] M. A. El-Shaed, Fractional calculus model of the semilunar heart valve vibrations, International design engineering technical conferences and computers and information in engineering confer-ence., (2003). Google Scholar

[4] M. W. Alomari, A companion of the generalized trapezoid inequality and applications, J. Math. Appl., 36 (2013) 5–15. Google Scholar

[5] S. S. Dragomir, On trapezoid quadrature formula and applications, Kragujev. J. Math., 23 (2001), 25–36. Google Scholar

[6] M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applica-tions, Math. Comput. Model., 54 (2011), 2175–2182. https://doi.org/10.1016/j.mcm.2011.05.026 Google Scholar

[7] M. Z. Sarikaya, H. Budak, Some Hermite-Hadamard type integral inequalities for twice differen-tiable mappings via fractional integrals, Facta Univ., Ser. Math. Inform. 29 (4) (2014), 371–384. Google Scholar

[8] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (5) (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 Google Scholar

[9] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujev. J. Math., 22, 13 (2000) 19. http://eudml.org/doc/253402 Google Scholar

[10] M. Z. Sarikaya, A. Saglam, H. Yaldiz, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. open probl. comput. sci. math. 5 (3) (2012). https://doi.org/10.48550/arXiv.1005.0451 Google Scholar

[11] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson’s inequality and applications, J. inequal. appl. 5 (2000), 533–579. Google Scholar

[12] M. Z. Sarikaya, E. Set, M. E. O ̈zdemir, On new inequalities of Simpson’s type for s-convex functions, Comput. math. appl. 60 (8) (2000), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 Google Scholar

[13] T. Du, Y. Li, Z. Yang, A generalization of Simpson’s inequality via differentiable mapping using extended (s, m)-convex functions, Appl. math. comput. 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 Google Scholar

[14] S. S. Dragomir, On Simpson’s quadrature formula for mappings of bounded variation and appli-cations, Tamkang J. math., 30 (1) (1999), 53–58. Google Scholar

[15] H. Yang, S. Qaisar, A. Munir, and M. Naeem, New inequalities via Caputo-Fabrizio integral operator with applications, Aims Mathe, 8 (8) (2023), 19391–19412. https://doi.org/10.3934/math.2023989 Google Scholar

[16] N. A. Alqahtani., S. Qaisar, A. Munir, M. Naeem, & H. Budak, Error bounds for fractional integral inequalities with applications, Fractal and Fractional 8 (4), 208, (2024). https://doi.org/10.3390/fractalfract8040208 Google Scholar

[17] M. U. D. Junjua, A. Qayyum, A. Munir, H. Budak, M. M. Saleem, & S. S. A. Supadi, A study of some new Hermite–Hadamard inequalities via specific convex functions with applications, Mathematics 12 (3) (2024), 478. https://doi.org/10.3390/math12030478 Google Scholar

[18] S. K. Paul, L. N. Mishra, V. N. Mishra., & D. Baleanu, Analysis of mixed type nonlinear Volterra-Fredholm integral equations involving the Erd ́elyi-Kober fractional operator, Journal of king saud university-science 35 (10), (2023), 102949. https://doi.org/10.1016/j.jksus.2023.102949 Google Scholar

[19] V. K. Pathak, & L. N. Mishra, On solvbility and approximatting the soultions for nonlinear infinite system of frational functions integral equations in sequence space lp, p > 1, Journal of integral equations and applications 35 (4) (2023), 443–458. Google Scholar

[20] S. K. Paul, & L. N. Mishra, Stability analysis through the Bielecki metric to nonlinear fractional integral equations of n-product operators, Aims Mathe. 9 (4) (2024), 7770–7790. http://dx.doi.org/10.3934/math.2024377 Google Scholar

[21] V. K. Pathak, & L. N. Mishra, & V. N. Mishra, On the solvability of a class of nonlinear functional integral equations involving Erd ́elyi–Kober fractional operator, Mathematical methods in the applied sciences 46 (13) (2023), 14340–14352. https://doi.org/10.1002/mma.9322 Google Scholar

[22] S. K. Paul, & L. N. Mishra, & D. Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, AIMS Mathematics 8 (2023). https://doi.org/10.3934/math.2023891 Google Scholar

[23] M. Raiz, R.S. Rajawat, L. N. Mishra, , V. N. Mishra, Approximation on bivariate of Durrmeyer operators based on beta function, The Journal of Analysis. (2023). https://doi.org/10.1007/s41478-023-00639-7 Google Scholar

[24] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of simpson’s type for s-convex functions, Comput. math. appl.,60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 Google Scholar

[25] A. D. Booth. Numerical Methods, 3rd edn. Butterworths, California (1966). Google Scholar

[26] J. L. W. V. Jensen. Surles fonctions convexes et les inegalites entre les valeurs moyennes, Acta math. 30 (1905), 175–193. Google Scholar

[27] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100–111. Google Scholar

[28] S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993). Google Scholar

[29] H. Budak, P. K ̈osem, H. Kara, On new Milne-type inequalities for fractional integrals, J inequal appl., 10(2023). https://doi.org/10.1186/s13660-023-02921-5 Google Scholar

[30] M. Caputo, & M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in fractional differentiation & applications.1 (2) (2015), 73–85. Google Scholar

[31] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge unversity press, (1955). Google Scholar