A note on Simpson $3/8$ rule for function whose modulus of first derivatives are $s$-convex function with application
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Springer, 1993. Google Scholar
[2] M. U. D. Junjua, A. Qayyum, A. Munir, H. Budak, M. M. Saleem, and S. S. Supadi, A study of some new Hermite-Hadamard inequalities via specific convex functions with applications, Mathematics 12 (3) (2024), 478. https://doi.org/10.3390/math12030478 Google Scholar
[3] H. Yang, S. Qaisar, A. Munir, and M. Naeem, New inequalities via Caputo-Fabrizio integral operator with applications, Aims Mathematics 8 (8) (2023), 19391–19412. https://doi.org/10.3934/math.2023989 Google Scholar
[4] H. Budak, On Fejér type inequalities for convex mappings utilizing fractional integrals of a function with respect to another function, Results in Mathematics 74 (2019), 1–15. https://doi.org/10.1007/s00025-019-0960-8 Google Scholar
[5] S. S. Dragomir, R. P. Agarwal, and P. Cerone, On Simpson’s inequality and applications, Journal of Inequalities and Applications 5 (2000), 533–579. Google Scholar
[6] M. Z. Sarikaya, E. Set, and M. E. Ozdemir, On new inequalities of Simpson’s type for s-convex functions, Computers and Mathematics with Applications 60 (8) (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 Google Scholar
[7] H. Budak, F. Hezenci, and H. Kara, On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Mathematical Methods in the Applied Sciences 44 (17) (2021), 12522–12536. https://doi.org/10.1002/mma.7558 Google Scholar
[8] H. Budak, F. Hezenci, and H. Kara, On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Advances in Difference Equations 2021 (1) (2021), 1–32. https://doi.org/10.1186/s13662-021-03463-0 Google Scholar
[9] J. Park, On Simpson-like type integral inequalities for differentiable preinvex functions, Applied Mathematical Sciences 7 (121) (2013), 6009–6021. http://dx.doi.org/10.12988/ams.2013.39498 Google Scholar
[10] F. Hezenci, H. Budak, and H. Kara, New version of fractional Simpson type inequalities for twice differentiable functions, Advances in Difference Equations 2021 (2021), 1–10. https://doi.org/10.1186/s13662-021-03615-2 Google Scholar
[11] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, and H. Budak, Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions, Fractal and fractional, 6 (3) (2022), 175. https://doi.org/10.3390/fractalfract6030175 Google Scholar
[12] S. Gao and W. Shi, On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math, 74 (1) (2012), 33–41. Google Scholar
[13] F. Hezenci and H. Budak, Some Perturbed Newton’s type inequalities for Riemann-Liouville fractional integrals, Rocky mountain journal of mathematics, 53 (4) (2023), 1117–1127. https://doi.org/10.1216/rmj.2023.53.1117 Google Scholar
[14] S. Iftikhar, P. Kumam, and S. Erden, Newton’s-type integral inequalities via local fractional integrals, Fractals, 28 (03) (2020), 2050037. https://doi.org/10.1142/S0218348X20500371 Google Scholar
[15] M. A. Noor, K. I. Noor, and S. Iftikhar, Newton inequalities for p-harmonic convex functions, 40 (2) (2018), 239–250. https://dx.doi.org/10.5831/HMJ.2018.40.2.239 Google Scholar
[16] S. Erden, S. Iftikhar, P. Kumam, and P. Thounthong, On error estimations of Simpson’s second type quadrature formula, Mathematical methods in the applied sciences. https://doi.org/10.1002/mma.7019 Google Scholar
[17] N. Alp, M. Z. Sarikaya, M. Kunt, and I. Iscan, Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University-Science 30 (2) (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 Google Scholar
[18] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Mathematica 30 (1) (1906), 175–193. Google Scholar
[19] V. G. Mihe, A generalization of the convexity, Seminer on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania, 1993. Google Scholar
[20] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Mathematicae 48 (1994), 100–111. Google Scholar
[21] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Vienna (1997), 223–276. Google Scholar
[22] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications 1 (2) (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 Google Scholar