Korean J. Math. Vol. 32 No. 3 (2024) pp.365-379
DOI: https://doi.org/10.11568/kjm.2024.32.3.365

A note on Simpson $3/8$ rule for function whose modulus of first derivatives are $s$-convex function with application

Main Article Content

Arslan Munir
Hüseyin Budak
Hasan Kara
Laxmi Rathour
Irza Faiz

Abstract

Researchers continue to explore and introduce new operators, methods, and applications related to fractional integrals and inequalities. In recent years, fractional integrals and inequalities have gained a lot of attention. In this paper, firstly we established the new identity for the case of differentiable function through the fractional operator (Caputo-Fabrizio). By utilizing this novel identity, the obtained results are improved for Simpson second formula-type inequality. Based on this identity the Simpson second formula-type inequality is proved for the $s$-convex functions. Furthermore, we also include the applications to special means.


Article Details

References

[1] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Springer, 1993. Google Scholar

[2] M. U. D. Junjua, A. Qayyum, A. Munir, H. Budak, M. M. Saleem, and S. S. Supadi, A study of some new Hermite-Hadamard inequalities via specific convex functions with applications, Mathematics 12 (3) (2024), 478. https://doi.org/10.3390/math12030478 Google Scholar

[3] H. Yang, S. Qaisar, A. Munir, and M. Naeem, New inequalities via Caputo-Fabrizio integral operator with applications, Aims Mathematics 8 (8) (2023), 19391–19412. https://doi.org/10.3934/math.2023989 Google Scholar

[4] H. Budak, On Fejér type inequalities for convex mappings utilizing fractional integrals of a function with respect to another function, Results in Mathematics 74 (2019), 1–15. https://doi.org/10.1007/s00025-019-0960-8 Google Scholar

[5] S. S. Dragomir, R. P. Agarwal, and P. Cerone, On Simpson’s inequality and applications, Journal of Inequalities and Applications 5 (2000), 533–579. Google Scholar

[6] M. Z. Sarikaya, E. Set, and M. E. Ozdemir, On new inequalities of Simpson’s type for s-convex functions, Computers and Mathematics with Applications 60 (8) (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 Google Scholar

[7] H. Budak, F. Hezenci, and H. Kara, On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Mathematical Methods in the Applied Sciences 44 (17) (2021), 12522–12536. https://doi.org/10.1002/mma.7558 Google Scholar

[8] H. Budak, F. Hezenci, and H. Kara, On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Advances in Difference Equations 2021 (1) (2021), 1–32. https://doi.org/10.1186/s13662-021-03463-0 Google Scholar

[9] J. Park, On Simpson-like type integral inequalities for differentiable preinvex functions, Applied Mathematical Sciences 7 (121) (2013), 6009–6021. http://dx.doi.org/10.12988/ams.2013.39498 Google Scholar

[10] F. Hezenci, H. Budak, and H. Kara, New version of fractional Simpson type inequalities for twice differentiable functions, Advances in Difference Equations 2021 (2021), 1–10. https://doi.org/10.1186/s13662-021-03615-2 Google Scholar

[11] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, and H. Budak, Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions, Fractal and fractional, 6 (3) (2022), 175. https://doi.org/10.3390/fractalfract6030175 Google Scholar

[12] S. Gao and W. Shi, On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math, 74 (1) (2012), 33–41. Google Scholar

[13] F. Hezenci and H. Budak, Some Perturbed Newton’s type inequalities for Riemann-Liouville fractional integrals, Rocky mountain journal of mathematics, 53 (4) (2023), 1117–1127. https://doi.org/10.1216/rmj.2023.53.1117 Google Scholar

[14] S. Iftikhar, P. Kumam, and S. Erden, Newton’s-type integral inequalities via local fractional integrals, Fractals, 28 (03) (2020), 2050037. https://doi.org/10.1142/S0218348X20500371 Google Scholar

[15] M. A. Noor, K. I. Noor, and S. Iftikhar, Newton inequalities for p-harmonic convex functions, 40 (2) (2018), 239–250. https://dx.doi.org/10.5831/HMJ.2018.40.2.239 Google Scholar

[16] S. Erden, S. Iftikhar, P. Kumam, and P. Thounthong, On error estimations of Simpson’s second type quadrature formula, Mathematical methods in the applied sciences. https://doi.org/10.1002/mma.7019 Google Scholar

[17] N. Alp, M. Z. Sarikaya, M. Kunt, and I. Iscan, Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud University-Science 30 (2) (2018), 193–203. https://doi.org/10.1016/j.jksus.2016.09.007 Google Scholar

[18] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Mathematica 30 (1) (1906), 175–193. Google Scholar

[19] V. G. Mihe, A generalization of the convexity, Seminer on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania, 1993. Google Scholar

[20] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Mathematicae 48 (1994), 100–111. Google Scholar

[21] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Vienna (1997), 223–276. Google Scholar

[22] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications 1 (2) (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 Google Scholar