Ruled surfaces generated by Salkowski curve and its Frenet vectors in Euclidean 3-space
Main Article Content
Abstract
In present study, we introduce ruled surfaces whose base curve is the Salkowski curve in Euclidean 3-space and whose generating lines consist of the Frenet vectors of this curve (tangent, principal normal and binormal vectors). Then, we produce regular surfaces from a vector with real coefficients, which is a linear combination of these vectors, and we examine some special cases for these surfaces. Moreover, we present some geometric properties and graphics of all these surfaces.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] P.Alegre,K.Arslan,A.Carriazo,C.Murathan,G.O ̈ztu ̈rk,Somespecialtypesdevelopableruled surface, Hacettepe J. Math. Stat. 39 (3) (2010), 319–325. Google Scholar
[2] A. T. Ali, Position vectors of slant helices in Euclidean 3-space, J. Egyptian Math. Soc. 20 (1) (2012), 1–6. https://doi.org/10.1016/j.joems.2011.12.005 Google Scholar
[3] A. T. Ali, H. S. Abdel Aziz, A. H. Sorour, Ruled surfaces generated by some special curves in Euclidean 3-Space, J. Egyptian Math. Soc. 21 (2013), 285–294. https://doi.org/10.1016/j.joems.2013.02.004 Google Scholar
[4] M. Altın, A. Kazan, H. B. Karada ̆g, Ruled Surfaces in 3 with Density, Honam Math. J. 41(4) (2019), 683–695. https://doi.org/10.5831/HMJ.2019.41.4.683 Google Scholar
[5] M. Altın, A. Kazan, H. B. Karada ̆g, Ruled surfaces constructed by planar curves in Euclidean 3-space with density, Celal Bayar Univ. J. Sci. 16 (1) (2020), 81–88. Google Scholar
[6] A. Gray, E. Abbena, S. Salamon, Modern differential geometry of curves and surfaces with Mathematica, CRC Press. New York (2006). Google Scholar
[7] S. Gu ̈r, S. S ̧enyurt, Frenet vectors and geodesic curvatures of spheric indicators of Salkowski curves in E3, Hadronic J. 33 (5) (2010), 485–512. Google Scholar
[8] S. Gu ̈r Mazlum, S. S ̧enyurt, M. Bekta ̧s, Salkowski curves and their modified orthogonal frames in E3, J. New Theory. 40 (2022), 1226. https://doi.org/10.53570/jnt.1140546 Google Scholar
[9] S.Gu ̈rMazlum,M.Bekta ̧s, (k,m)−typeslanthelicesforthenullcartancurvewiththeBishop frame in E14, Honam Math. J. 45 (4) (2023), 610–618. https://doi.org/10.5831/HMJ.2023.45.4.610 Google Scholar
[10] S. Gu ̈r Mazlum, Bishop frames of Salkowski curves in E3, Bitlis Eren Univ. J. Sci. 13(1) (2024), 79-91. https://doi.org/10.17798/bitlisfen.1345438 Google Scholar
[11] S. Gu ̈r Mazlum, On the Gaussian curvature of timelike surfaces in Lorentz-Minkowski 3-space, Filomat, 37(28) (2023), 9641-9656. https://doi.org/10.2298/FIL2328641G Google Scholar
[12] S. Izumiya, N. Takeuchi, Special curves and ruled surfaces, Beitr Algebra Geom. 44(1) (2003), 203–212. Google Scholar
[13] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turkish J. Math. 28(2) (2004), 153–163. Google Scholar
[14] Y. H. Kim, D. W. Yoon, On the Gauss Map of Ruled Surfaces in Minkowski Space, Rocky Mountain J. Math. 35(5) (2005), 1555–1581. Google Scholar
[15] L. Kula, N. Ekmek ̧ci, Y. Yaylı, K. I ̇larslan, Characterizations of slant helices in Euclidean 3-space, Turkish J. Math. 33 (2009), 1-13. https://doi.org/10.3906/mat-0809-17 Google Scholar
[16] Y. Li, X. Jiang, Z. Wang, Singularity properties of Lorentzian Darboux surfaces in Lorentz–Minkowski spacetime, Res. Math. Sci. 11 (2024), 7. https://doi.org/10.1007/s40687-023-00420-z Google Scholar
[17] Y. Li, Z. Chen, S. H. Nazra, R. A. Abdel-Baky, Singularities for Timelike Developable Surfaces in Minkowski 3-Space, Symmetry. 15 (2023), 277. https://doi.org/10.3390/sym15020277 Google Scholar
[18] Y. Li, Z. Wang, T. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebr. 31 (2021), 1–19. https://doi.org/10.1007/s00006-020-01097-1 Google Scholar
[19] Y. Li, Z. Wang, T. Zhao, Slant helix of order n and sequence of Darboux developables of principal-directional curves, Math. Methods Appl. Sci. 43(17) (2020), 9888–9903. https://doi.org/10.1002/mma.6663 Google Scholar
[20] J. Monterde, Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geom. Des. 26(3) (2009), 271–278. https://doi.org/10.1016/j.cagd.2008.10.002 Google Scholar
[21] J. Monterde, The Bertrand curve associated to a Salkowski curve, J. Geom. 111(2) (2020), 21. https://doi.org/10.1007/s00022-020-00533-8 Google Scholar
[22] S. Ouarab, A. O. Chahdi, Special family of ruled surfaces in Euclidean 3-space, Int. J. Sci.Eng. Res. 10(5) (2019), 320–327. Google Scholar
[23] M.O ̈nder,O.Kaya,CharacterizationsofslantruledsurfacesintheEuclidean3-space,Caspian J. Math. Sci. 6(1) (2017), 31–46. https://doi.org/10.22080/CJMS.2017.1637 Google Scholar
[24] E. Salkowski, Zur transformation von raumkurven, Math. Ann. 66(4) (1909), 517–557. Google Scholar
[25] A. Sarıo ̆glugil, A. Tutar, On ruled surfaces in Euclidean space E3, Int. J. Contemp. Math. Sci. 2(1) (2007), 1–11. Google Scholar
[26] S. S ̧enyurt, S. Gu ̈r Mazlum, L. Grilli, Gaussian curvatures of parallel ruled surfaces, Appl. Math. Sci. 149(4) (2020), 171–183. https://doi.org/10.12988/ams.2020.912175 Google Scholar
[27] Y. Tun ̧cer, N. Ekmekc ̧i, A study on ruled surface in Euclidean 3-space, J. Dyn. Sys. Geom. Theor. 8(1) (2013), 49–57. https://doi.org/10.1080/1726037X.2010.10698577 Google Scholar
[28] O ̈. G. Yıldız, M. Akyi ̆git, M. Tosun, On the trajectory ruled surfaces of framed base curves in the Euclidean space, Math. Meth. Appl. Sci. 44(9) (2021), 7463–7470. https://doi.org/10.1002/mma.6267 Google Scholar
[29] Y. Yu, H. Liu, S. D. Jung, Structure and characterization of ruled surfaces in Euclidean 3-space, Appl. Math. Comput. 233 (2014), 252–259. https://doi.org/10.1016/j.amc.2014.02.006 Google Scholar