Korean J. Math. Vol. 32 No. 4 (2024) pp.629-637
DOI: https://doi.org/10.11568/kjm.2024.32.4.629

A note on four dimensional summability methods

Main Article Content

Medine Yeşilkayagil Savaşcı

Abstract

 Ishiguro studied some two dimensional summability methods in \cite{ki}. In this paper, we define the four dimensional Zweier matrix and extend the results given by Ishiguro \cite{ki} to four dimensional summability methods. We prove that an Abel summable double sequence is also summable the product of Abel and Zweier methods to the same limit. Besides this, we show the four dimensional Riesz and Zweier methods don't imply each other. In addition, we emphasize the four dimensional Zweier method implies the four dimensional Borel method.



Article Details

References

[1] A. M. Alotaibi and C. Cakan, The Riesz convergence and Riesz core of double sequences, J. Inequal. Appl. 2012 (2012): 56, 8 pp. https://dx.doi.org/10.1186/1029-242X-2012-56 Google Scholar

[2] F. Basar, Summability theory and its applications, CRC Press, Boca Raton, FL, 2022, xxvii+492 pp. https://dx.doi.org/10.1201/9781003294153 Google Scholar

[3] F. Basar and M. Yesilkayagil Savasci, Double sequence spaces and four-dimensional matrices, Monogr. Res. Notes Math. CRC Press, Boca Raton, FL, 2022, xviii+233 pp. https://dx.doi.org/10.1201/9781003285786 Google Scholar

[4] S. Demiriz and S. Erdem, Domain of Euler-Totient matrix operator in the space Lp, Korean J. Math. 28 (2) (2020), 361–378. https://dx.doi.org/10.11568/kjm.2020.28.2.361 Google Scholar

[5] S. Demiriz and S. Erdem, The spaces of almost Euler-Totient convergent and almost Euler-Totient null double sequences, Ann. Oradea Univ. Math. Fascicola 28 (2) (2021), 21–32. Google Scholar

[6] H. J. Hamilton, Transformations of multiple sequences, Duke Math. J. 2 (1936), 29–60. https://dx.doi.org/10.1215/S0012-7094-36-00204-1 Google Scholar

[7] K. Ishiguro, On the summability method (Y), Proc. Japan Acad. 40 (7) (1964), 482–486. https://dx.doi.org/10.3792/pja/1195522679 Google Scholar

[8] M. T. Karaev and M. Zeltser, On Abel convergence of double sequences, Numer. Funct. Anal. Optim. 31 (10) (2010), 1185–1189. https://dx.doi.org/10.1080/01630563.2010.501263 Google Scholar

[9] A. Kiltho, J. Bashir and A. M. Brono, Some double sequence spaces generated by four-dimensional Pascal matrix, Int. J. Math. Comput. Res. 9 (8) (2021), 2371–2375. https://dx.doi.org/10.47191/ijmcr/v9i8.02 Google Scholar

[10] A. Kiltho, J. Bashir and A. M. Brono, On the domain of four dimensional Pascal matrix in the space lq2, Int. J. Sci. Research Publ. 11 (9) (2021), 288–292. Google Scholar

[11] M. Mursaleen and F. Basar, Domain of Cesàro mean of order one in some spaces of double sequences, Stud. Sci. Math. Hungar. 51 (3) (2014), 335–356. https://dx.doi.org/10.1556/SScMath.51.2014.3.1287 Google Scholar

[12] F. Nuray and R. F. Patterson, Some Tauberian theorems for four-dimensional Euler and Borel summability, Adv. Difference Equ. 2015 (2015): 50, 8 pp. Google Scholar

[13] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321. https://dx.doi.org/10.1007/BF01448977 Google Scholar

[14] G. M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1926), 50–73. https://dx.doi.org/10.2307/1989172 Google Scholar

[15] O. Szasz, On the product of two summability methods, Ann. Soc. Polon. Math. 25 (1952), 75–84. Google Scholar

[16] G. Talebi, Operator norms of four-dimensional Hausdorff matrices on the double Euler sequence spaces, Linear Multilinear Algebra 65 (11) (2017), 2257–2267. https://dx.doi.org/10.1080/03081087.2016.1267108 Google Scholar

[17] G. Talebi, Boundedness problem of four-dimensional matrices on the domain spaces of Lp, Results Math. 74 (1) (2019), 1–16. https://dx.doi.org/10.1007/s00025-019-0958-2 Google Scholar

[18] M. Yesilkayagil and F. Basar, Domain of Euler mean in the space of absolutely p-summable double sequences with 0 < p < 1, Anal. Theory Appl. 34 (3) (2018), 241–252. https://dx.doi.org/10.4208/ata.OA-2017-0056 Google Scholar

[19] M. Yesilkayagil and F. Basar, Domain of Riesz mean in some spaces of double sequences, Indag. Math. (N.S.) 29 (3) (2018), 1009–1029. https://dx.doi.org/10.1016/j.indag.2018.03.006 Google Scholar