Algebraic constructions of groupoids for metric spaces
Main Article Content
Abstract
Given a groupoid
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] P. J. Allen, H. S. Kim and J. Neggers, On companion d-algebras, Math. Slovaca 57 (2) (2007), 93–106. https://dx.doi.org/10.2478/s12175-007-0001-z Google Scholar
[2] A. Iorgulescu, Algebras of Logic as BCK algebras, Editura ASE, Bucharest, 2008. Google Scholar
[3] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa, Korea, 1994. Google Scholar
[4] Gh. Moghaddasi, Sequentially injective and complete acts over a semigroup, J. Nonlinear Sci. Appl. 5 (5) (2012), 345–349. https://dx.doi.org/10.22436/jnsa.005.05.04 Google Scholar
[5] L. Nebesky, Travel groupoids, Czech. Math. J. 56 (2) (2006), 659–675. https://dx.doi.org/10.1007/s10587-006-0046-0 Google Scholar
[6] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1) (1999), 19–26. Google Scholar
[7] J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (3) (1999), 243–251. Google Scholar
[8] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (1–2) (2002), 21–29. Google Scholar
[9] H. K. Park and H. S. Kim, On quadratic B-algebras, Quasigroups Related Syst. 8 (2001), 67–72. Google Scholar
[10] K. P. R. Sastry, Ch. R. Rao, A. C. Sekhar and M. Balaiah, A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces, J. Nonlinear Sci. Appl. 6 (4) (2013), 285–292. https://dx.doi.org/10.22436/jnsa.006.04.06 Google Scholar
[11] A. Wronski, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211–213. Google Scholar
[12] H. Yisheng, BCI-algebras, Science Press, Beijing, 2006. Google Scholar