Korean J. Math. Vol. 32 No. 3 (2024) pp.561-591
DOI: https://doi.org/10.11568/kjm.2024.32.3.561

Cone $\mathfrak{C}$-class functions using $(CLR_{\Gamma \mathfrak{L} })$-property on cone $b$-normed spaces with application

Main Article Content

K. Maheshwaran
Arslan Hojat Ansari
Stojan N Radenovic
M.S. Khan
Yumnam Mahendra Singh

Abstract

In this article, we demonstrate the conditions for the existence of common fixed points $(CFP)$ theorems for four self-maps satisfying the common limit range $(CLR)$-property on cone $b$-normed spaces $(CbNS)$ via $\mathfrak{C}$-class functions. Furthermore, we have a unique common fixed point for two weakly compatible $ (WC)$ pairings. Towards the end, the existence and uniqueness of common solutions for systems of functional equations arising in dynamic programming are discussed as an application of our main result.



Article Details

References

[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Appl. 341 (2008), 1.3, 1.8. https://dx.doi.org/10.1016/j.jmaa.2007.09.070 Google Scholar

[2] S. Aleksic, Z. Kadelburg, Z.D. Mitrovic and S. Radenovic, A new survey: Cone metric spaces, J. Inter. Math. Virtual Institute 9 (2019), 93–121. Google Scholar

[3] A.H. Ansari, Note on φ−ψ-contractive type mappings and related fixed points, The 2nd Regional Conference on Mathematics and Applications PNU (2014), 377–380. Google Scholar

[4] A.H. Ansari, S. Chandok, N. Hussin and L. Paunovic, Fixed points of (ψ, φ)-weak contractions in regular cone metric spaces via new function, J. Adv. Math. Stud. 9 (1) (2016), 72–82. https://www.isroset.org/pub_paper/IJSRMSS/32-IJSRMSS-01061.pdf Google Scholar

[5] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca 64 (4) (2014), 941–960. https://dx.doi.org/10.2478/s12175-014-0250-6 Google Scholar

[6] I.A. Bakhtin, The contraction mapping principle in almost metric space, Funct. Anal. Gos. Ped. Inst. Unianowsk 30 (1989), 26–37. https://www.scirp.org/reference/referencespapers?referenceid=2207100 Google Scholar

[7] R. Bellman and E.S. Lee, Functional equations in dynamic programming, Aequationes Mathematicae 17 (1) (1978), 1–18. https://dx.doi.org/10.1007/BF01818535 Google Scholar

[8] M. Boriceanu, M. Bota and A. Petrusel, Mutivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8 (2) (2010), 367–377. https://dx.doi.org/10.2478/s11533-010-0009-4 Google Scholar

[9] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math Inform Univ Ostrav 5 (1993), 5–11. http://dml.cz/dmlcz/120469 Google Scholar

[10] E. Hewitt and K. Stromberg, Real and Abstract Analysis, New York: Springer-Verlag, (1965). https://link.springer.com/book/10.1007/978-3-642-88044-5 Google Scholar

[11] L.G. Huang and X. Zhang, Cone metric space and fixed point theorems of contractive mappings, J. Mat. Anal. App. 332 (2) (2007), 1468–1476. https://dx.doi.org/10.1016/j.jmaa.2005.03.087 Google Scholar

[12] H. Huang and S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl. 112 (2013), 1–10. https://dx.doi.org/10.1186/1687-1812-2014-55 Google Scholar

[13] N. Hussain and M.H. Shah, KKM mappings in cone b-metric space, Comp. Math. Appl. 62 (2011), 1677–1684. https://dx.doi.org/10.1016/j.camwa.2011.06.004 Google Scholar

[14] S. Jankovic, Z. Kadelburg and S. Radenovic, On cone metric spaces: a survey, Nonlinear Analysis: Theory, Methods & Applications 74 (7) (2011), 2591–2601. https://dx.doi.org/10.1016/j.na.2010.12.014 Google Scholar

[15] Jitender Kumar, Common Fixed Point Theorems Of Weakly Compatible Maps Satisfying (E.A.) and (CLR) Property, International Journal of Pure and Applied Mathematics 88 (3) (2013), 363–376. https://dx.doi.org/10.12732/ijpam.v88i3.4 Google Scholar

[16] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci. 9 (4) (1986), 771–777. https://dx.doi.org/10.1155/S0161171286000935 Google Scholar

[17] E. Karapinar, Fixed Point Theorems in cone Banach spaces, Fixed Point Theory and Applications (2009), 1087–1093. https://dx.doi.org/10.1155/2009/609281 Google Scholar

[18] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc. 30 (1984), 1–9. https://dx.doi.org/10.1017/S0004972700001659 Google Scholar

[19] Z. Liu, X. Li, S.M. Kang and S.Y. Cho, Fixed point theorems for mappings satisfying contractive conditions of integral type and applications, Fixed Point Theory and Applications 64 (2011), 1–18. https://dx.doi.org/10.1186/1687-1812-2011-64 Google Scholar

[20] Z. Liu, X. Zou, S.M. Kang and J.S. Ume, Common fixed points for a pair of mappings satisfying contractive conditions of integral type, Journal of Inequalities and Applications 394 (2014), 1–19. https://dx.doi.org/10.1186/1029-242X-2014-394 Google Scholar

[21] H.K. Nashine, Common fixed point theorems satisfying integral type rational contractive conditions and applications, Miskolc Mathematical Notes 16 (1) (2015), 321–351. https://dx.doi.org/10.18514/MMN.2015.1133 Google Scholar

[22] H.K. Pathak, Common Fixed Point Theorems Using Property (E.A) In Complex-Valued Metric Spaces, Thai Journal of Mathematics 11 (2) (2013), 347–355. https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/382/378 Google Scholar

[23] K.P.R. Rao, Common Fixed Point Theorems For Mappings Under (Clrs)-Property In Partial Metric Spaces, Demonstratio Mathematica 49 (3) (2016), 357–371. https://dx.doi.org/10.1515/dema-2016-0030 Google Scholar

[24] Sh. Rezapour and R. Hamlbarani, Some notes on the paper: Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications 345 (2) (2008), 719–724. https://dx.doi.org/10.1016/j.jmaa.2008.04.049 Google Scholar

[25] W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, Journal of Applied Mathematics (2011), 1–14. https://dx.doi.org/10.1155/2011/637958 Google Scholar

[26] D. Turkoglu, M. Abuloha and T. Abdeljawad, Some theorems and examples of cone metric spaces, J. Comput. Anal. 12 (4) (2010), 739–753. Google Scholar

[27] C. Yang and X. Zhu, The concept of cone b-metric space and fixed point theorems, Open Mathematics 19 (2021), 1187–1196. https://dx.doi.org/10.1515/math-2021-0068 Google Scholar