Korean J. Math. Vol. 32 No. 4 (2024) pp.703-725
DOI: https://doi.org/10.11568/kjm.2024.32.4.703

On Tauberian conditions for weighted generators of triple sequences

Main Article Content

Asif Hussain Jan
Tanweer Jalal

Abstract

This paper introduces a novel perspective on how the (N¯,p,q,r) method relates to P-convergence for triple sequences. Our main objective is to establish Tauberian conditions that govern the behavior of the weighted generator sequence (zlmn) concerning the sequences (Pl), (Qm), and (Rn), aiming to offer a fresh interpretation. These conditions manage the OL- and O-oscillatory properties and establish a link from (N¯,p,q,r) summability to P-convergence, contingent upon specific constraints on the weight sequences. Furthermore, we demonstrate that particular instances, such as the OL-condition of Landau type and the O-condition of Hardy type concerning (Pl), (Qm), and (Rn), serve as Tauberian conditions for (N¯,p,q,r) summability under additional conditions. Thus, our findings encompass traditional Tauberian theorems, including conditions related to gradual decline and slow oscillation in specific scenarios.



Article Details

References

[1] S. Baron and U. Stadtmüller, Tauberian theorems for power series methods applied to double sequences, J. Math. Anal. Appl. 211 (2) (1997), 574–589. Google Scholar

[2] C. Belen, Some Tauberian theorems for weighted means of bounded double sequences, An. Științ. Univ. Al. I. Cuza Iași. Mat. (N.S.) 63 (1) (2017), 115–122. Google Scholar

[3] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1989. Google Scholar

[4] R. Bojanic and E. Seneta, A unified theory of regularly varying sequences, Math. Z. 134 (1973), 91–106. Google Scholar

[5] T. J. I. A. Bromwich, An Introduction to the Theory of Infinite Series, MacMillan & Co., Ltd., London, 1908. Google Scholar

[6] C. P. Chen and J. M. Hsu, Tauberian theorems for weighted means of double sequences, Anal. Math. 26 (4) (2000), 243–262. Google Scholar

[7] İ. Çanak, A theorem for convergence of generator sequences, Comput. Math. Appl. 61 (2) (2011), 408–411. Google Scholar

[8] A. Esi, Statistical convergence of triple sequences in topological groups, Ann. Univ. Craiova Math. Comput. Sci. Ser. 40 (1) (2013), 29–33. Google Scholar

[9] Á. Fekete, Tauberian conditions for double sequences that are statistically summable by weighted means, Sarajevo J. Math. 1 (14) (2) (2005), 197–210. Google Scholar

[10] G. H. Hardy, On the convergence of certain multiple series, Proc. Lond. Math. Soc. 2 (1) (1904), 124–128. Google Scholar

[11] T. Jalal and I. A. Malik, I-convergent triple sequence spaces over n-normed space, Asia Pac. J. Math. 5 (2) (2018), 233–242. http://dx.doi.org/10.22199/issn.0717-6279-4867 Google Scholar

[12] T. Jalal and I. A. Malik, Some new triple sequence spaces over n-normed space, Proyecciones (Antofagasta) 37 (3) (2018), 547–564. http://dx.doi.org/10.4067/S0716-09172018000300547 Google Scholar

[13] T. Jalal and I. A. Malik, I-Convergence of triple difference sequence spaces over n-normed space, Tbilisi Math. J. 11 (4) (2018), 93–102. https://doi.org/10.32513/tbilisi/1546570888 Google Scholar

[14] T. Jalal and I. A. Malik, Topological and algebraic properties of triple n-normed spaces, Proc. 5th Int. Conf. Math. Comput., Springer Singapore, (2021), 187–196. Google Scholar

[15] A. H. Jan and T. Jalal, On lacunary ∆m-statistical convergence of triple sequence in intuitionistic fuzzy n-normed space, Korean J. Math. 31 (3) (2023), 349–361. https://doi.org/10.11568/kjm.2023.31.3.349 Google Scholar

[16] A. H. Jan and T. Jalal, On lacunary ∆m-statistical convergence of triple sequence in intuitionistic fuzzy normed space, Bull. Transilv. Univ. Brasov Ser. III Math. Comput. Sci. 66 (4) (2024), 101–116. https://doi.org/10.31926/but.mif.2024.4.66.1.7 Google Scholar

[17] A. H. Jan, Y. A. Bhat, T. Jalal, and N. A. Sheikh, On generation and properties of triple sequence-induced frames in Hilbert spaces, J. Numer. Anal. Approx. Theory, To appear, (2024). Google Scholar

[18] J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux, Bull. Soc. Math. Fr. 61 (1933), 55–62. Google Scholar

[19] V. N. Mishra, K. Khatri, and L. N. Mishra, Strong Cesàro summability of triple Fourier integrals, Fasciculi Math. 53 (2014), 95–112. Google Scholar

[20] L. N. Mishra, M. Raiz, L. Rathour, and V. N. Mishra, Tauberian theorems for weighted means of double sequences in intuitionistic fuzzy normed spaces, Yugosl. J. Oper. Res. 32 (3) (2022), 377–388. https://doi.org/10.2298/YJOR210915005M Google Scholar

[21] V. N. Mishra and L. N. Mishra, Trigonometric approximation of signals (functions) in ( L^p(p geq 1) )-norm, Int. J. Contemp. Math. Sci. 7 (19) (2012), 909–918. Google Scholar

[22] V. N. Mishra, L. N. Mishra, N. Subramanian, and S. A. A. Abdulla, Analytic weighted rough statistical convergence with rate of rough convergence and Voronovskaya theorem of triple difference sequences, Appl. Sci. 22 (2020), 157–168. Google Scholar

[23] F. Móricz, Tauberian theorems for Cesàro summable double sequences, Studia Math. 110 (1) (1994), 83–96. Google Scholar

[24] F. Móricz and U. Stadtmüller, Summability of double sequences by weighted mean methods and Tauberian conditions for convergence in Pringsheim’s sense, Int. J. Math. Math. Sci. (2004), 65–68, 3499–3511. Google Scholar

[25] Z. Önder, E. Savaş, and İ. Çanak, On the weighted generator of double sequences and its Tauberian conditions, Adv. Oper. Theory 8 (3) (2023), 38. Google Scholar

[26] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Anal. Math. 53 (3) (1900), 289–321. Google Scholar

[27] D. Rai, N. Subramanian, and V. N. Mishra, The generalized difference of ( chi^2_I ) of fuzzy real numbers over p-metric spaces defined by Musielak Orlicz function, New Trends Math. Sci. 4 (3) (2016), 296–306. https://doi.org/10.20852/ntmsci.2016320385 Google Scholar

[28] A. Sahiner, M. Gurdal, and F. K. Duden, Triple sequences and their statistical convergence, Turk. Klin. Psychiatr. J. 8 (2) (2007), 49–55. Google Scholar

[29] U. Stadtmüller, Tauberian theorems for weighted means of double sequences, Anal. Math. 25 (1) (1999), 57–68. Google Scholar

[30] Vandana, Deepmala, N. Subramanian, and V. N. Mishra, Riesz triple probabilistic of almost lacunary Cesàro ( C^{111} ) statistical convergence of ( chi^3 ) defined by a Musielak Orlicz function, Bol. Soc. Paran. Mat. 36 (4) (2018), 23–32. https://doi.org/10.5269/bspm.v36i4.32870 Google Scholar

[31] Vandana, Deepmala, N. Subramanian, and V. N. Mishra, The intuitionistic triple ( chi ) of ideal fuzzy real numbers over p-metric spaces defined by Musielak Orlicz function, Asia Pac. J. Math. 5 (1) (2018), 1–13. Google Scholar