Korean J. Math. Vol. 32 No. 4 (2024) pp.727-731
DOI: https://doi.org/10.11568/kjm.2024.32.4.727

On the N-supercyclicity of isometries on Banach spaces

Main Article Content

Hamid Rezaei
Meysam Asadipour

Abstract

In this paper, we present a simple and self-contained proof that isometries are not $N$-supercyclic and $m$-isometries are not supercyclic, providing an alternative to the proof given by the authors in [4, 5, 11].



Article Details

References

[1] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. I, Integral Equ. Oper. Theory, 21 (1995), 383–429. https://doi.org/10.1007/bf01222016 Google Scholar

[2] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. II, Integral Equ. Oper. Theory, 23 (1995), 1–48. https://doi.org/10.1007/bf01261201 Google Scholar

[3] J. Agler and M. Stankus, m-isometric transformations of Hilbert space. III, Integral Equ. Oper. Theory, 24 (1996), 379–421. https://doi.org/10.1007/bf01191619 Google Scholar

[4] S. I. Ansari and P. S. Bourdon, Some properties of cyclic operators, Acta Sci. Math., 63 (1997), 195–207. [Access Article](https://uva.theopenscholar.com/paul-bourdon/publications/some-properties-cyclic-operators) Google Scholar

[5] F. Bayart, m-isometries on Banach spaces, Math. Nachr., 284 (2011), 2141–2147. https://doi.org/10.1002/mana.200910029 Google Scholar

[6] F. Bayart, Dynamics of Linear Operators, Cambridge Tracts in Math., Vol. 179, Cambridge Univ. Press, 2009. https://doi.org/10.1017/cbo9780511581113 Google Scholar

[7] Gh. Baseri, A. I. Kashkooli, H. Rezaei, On the balanced convex hull of operator’s orbit, Iran J. Sci. Technol. Trans. Sci., 46 (2022), 659–665. https://doi.org/10.1007/s40995-022-01274-w Google Scholar

[8] T. Bermúdez, I. Marrero, and A. Martinón, On the orbit of an m-isometry, Integral Equ. Oper. Theory, 64 (4) (2009), 487–494. https://doi.org/10.1007/s00020-009-1700-3 Google Scholar

[9] P. S. Bourdon, N. S. Feldman, and J. Shapiro, Some properties of n-supercyclic operators, Stud. Math., 165 (2004), 135–157. Google Scholar

[10] N. S. Feldman, N-supercyclic operators, Stud. Math., 151 (2002), 141–159. https://doi.org/10.4064/sm151-2-3 Google Scholar

[11] M. Faghih-Ahmadi and K. Hedayatian, Hypercyclicity and supercyclicity of m-isometric operators, Rocky Mountain J. Math., 42 (1) (2012), 15–31. https://doi.org/10.1216/rmj-2012-42-1-15 Google Scholar

[12] R. Godement, Théorèmes Tauberiens et théorie spectrale, Ann. Sci. École Norm. Sup., 64 (3) (1947), 119–138. https://doi.org/10.24033/asens.945 Google Scholar

[13] K. G. Grosse-Erdmann and A. Peris, Linear Chaos, Universitext, Springer, 2011. https://doi.org/10.1007/978-1-4471-2170-1 Google Scholar

[14] L. Kérchy, Hyperinvariant subspaces of operators with non-vanishing orbits, Proc. Am. Math. Soc., 127 (1999), 1363–1370. https://doi.org/10.1090/s0002-9939-99-04842-x Google Scholar