Korean J. Math. Vol. 32 No. 3 (2024) pp.439-451
DOI: https://doi.org/10.11568/kjm.2024.32.3.439

On vector valued difference sequence spaces

Main Article Content

Manoj Kumar
RITU
Sandeep Gupta

Abstract

In the present paper, using the notion of difference sequence spaces, we introduce new kind of Cesàro summable difference sequence spaces of vector valued sequences with the aid of paranorm and modulus function. In addition, we extend the notion of statistical convergence to introduce a new sequence space $SC_1(\Delta,q)$ which coincides with $C_1^1(X,\Delta,\phi,\lambda,q)$ (one of the above defined Cesàro summable difference sequence spaces) under the restriction of bounded modulus function.



Article Details

References

[1] A. Aizpuru, M. C. Listan-Garcia and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math. 37 (4) (2014), 525–530. https://doi.org/10.2989/16073606.2014.981683 Google Scholar

[2] Y. Altin and M. Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math. 31 (2) (2005), 233–243. https://www.researchgate.net/publication/228659065 Google Scholar

[3] Y. Altin, M. Isik and R. Colak, A new sequence space defined by a modulus, Stud. Univ. Babes-Bolyai Math. 53 (2008), 3–13. https://zbmath.org/1212.46010 Google Scholar

[4] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. 29 (2) (2009), 427–434. https://doi.org/10.1016/s0252-9602(09)60042-4 Google Scholar

[5] C. A. Bektas, M. Et and R. Colak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2) (2004), 423–432. https://doi.org/10.1016/j.jmaa.2003.12.006 Google Scholar

[6] V. K. Bhardwaj and I. Bala, On lacunary generalized difference sequence spaces defined by orlicz functions in a seminormed space and ∆mq-lacunary statistical convergence, Demonstr. Math. 41 (2) (2008), 415–424. https://doi.org/10.1515/dema-2008-0217 Google Scholar

[7] V. K. Bhardwaj and S. Gupta, Cesaro summable difference sequence space, J. Inequal. Appl. 2013 (1), 1–9. https://doi.org/10.1186/1029-242x-2013-315 Google Scholar

[8] V. K. Bhardwaj and N. Singh, Some sequence spaces defined by Orlicz functions, Demonstr. Math. 33 (3) (2000), 571–582. https://doi.org/10.1515/dema-2000-0314 Google Scholar

[9] R. C. Buck, Generalized asymptotic density, Amer. J. Math. 75 (2) (1953), 335–346. https://doi.org/10.2307/2372456 Google Scholar

[10] M. Burgin and O. Duman, Statistical convergence and convergence in statistics, arXiv preprint. math/0612179 (2006). https://doi.org/10.48550/arXiv.math/0612179 Google Scholar

[11] R. Colak, On some generalized sequence spaces, Commun. Fac. Sci. Uni. Ank. Ser. A1 Math. Stat. 38 (1989) 35–46. https://doi.org/10.1501/commua1_0000000301 Google Scholar

[12] J. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis. 8 (1-2) (1988), 47–64. https://doi.org/10.1524/anly.1988.8.12.47 Google Scholar

[13] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (2) (1989), 194–198. https://doi.org/10.4153/cmb-1989-029-3 Google Scholar

[14] M. Et, V. K. Bhardwaj and S. Gupta On deferred statistical boundedness of order α, Comm. Statist. Theory Methods. 51 (24) (2022), 8786–8798. https://doi.org/10.1080/03610926.2021.1906434 Google Scholar

[15] H. Fast, Sur la convergence statistique, Colloq Math. 2 (3-4) (1951), 241–244. https://doi.org/10.4064/cm-2-3-4-241-244 Google Scholar

[16] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. Lond. Math. Soc. 37 (3) (1978), 508–520. https://doi.org/10.1112/plms/s3-37.3.508 Google Scholar

[17] J. A. Fridy, On statistical convergence, Analysis. 5 (4) (1985), 301–314. https://doi.org/10.1524/anly.1985.5.4.301 Google Scholar

[18] D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces defined using a modulus function, Indian J. pure appl. Math. 30 (8) (1999), 819–826. Google Scholar

[19] S. Gupta and V. K. Bhardwaj, On deferred f-statistical convergence, Kyungpook Math. J. 58 (2018), 91–103. https://doi.org/10.5666/KMJ.2018.58.1.91 Google Scholar

[20] M. Isik, On statistical convergence of generalized difference sequences Soochow J. Math. 30 (2) (2004), 197–206. https://www.researchgate.net/publication/267671338 Google Scholar

[21] G. Karabacak and A. Or, Rough Statistical Convergence for Generalized Difference Sequences, Electron J. Mathe. Anal. Appl. 11 (1) (2023), 222–230. Google Scholar

[22] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981), 169–176. https://doi.org/10.4153/CMB-1981-027-5 Google Scholar

[23] E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu. Math. 928 (1991), 41–52. http://www.ams.org/mathscinet-getitem?mr=1150232 Google Scholar

[24] I. J. Maddox, Elements of functional analysis, Camb. Univ. Press. 1970. https://doi.org/10.1002/bimj.19700120325 Google Scholar

[25] I. J. Maddox, Spaces of strongly summable sequences, Q. J. Math. 18 (1) (1967), 345–355. https://doi.org/10.1093/qmath/18.1.345 Google Scholar

[26] M. Mursaleen, λ-statistical convergence, Math. Slovaca. 50 (1) (2000), 111–115. Google Scholar

[27] H. Nakano, Concave modulars, J. Math. Soc. Japan. 5 (1) (1953), 29–49. https://doi.org/10.2969/jmsj/00510029 Google Scholar

[28] I. Niven and H. S. Zuckerman, An Introduction to Theory of Numbers, Fourth.Ed., New York John Willey and Sons, 1980. Google Scholar

[29] E. Ozturk and T. Bilgin, Strongly summable sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 25 (6) (1994), 621–621. Google Scholar

[30] D. Rath and B. C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl Math. 25 (1994), 381–381. Google Scholar

[31] W. H. Ruckle, Sequence Spaces, Pitman Advanced Publishing Program, 1981. Google Scholar

[32] T. Salat, On statistically convergent sequences of real numbers Math. slovaca. 30 (2) (1980), 139–150. http://dml.cz/dmlcz/136236 Google Scholar

[33] H. Sengul and M. Et, f-lacunary statistical convergence and strong f-lacunary summability of order α, Filomat. 32 (13) (2018), 4513–4521. https://doi.org/10.2298/fil1813513s Google Scholar

[34] N. Sharma and S. Kumar, Statistical Convergence and Cesaro Summability of Difference Sequences relative to Modulus Function, J. Class. Anal. 23 (1) (2024), 51–62. https://doi.org/10.7153/jca-2024-23-05 Google Scholar

[35] H. Steinhaus, Sur la convergence ordinaireet la convergence asymptotique, Colloq. Math. 2 (1) (1951), 73–74. Google Scholar

[36] B. C. Tripathy, On statistically convergent and statistically bounded sequences, Bull. Malays. Math. Soc. 20 (1) (1997), 31–33. Google Scholar

[37] B. C. Tripathy and H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary ∆-statistical convergence, An. Stiint. Univ. Ovidius Constanta. Ser. Mat. 20 (1) (2012), 417–430. https://doi.org/10.2478/v10309-012-0028-1 Google Scholar

[38] B. C. Tripathy, A. Esi and B. K. Tripathy, On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math. 31 (3) (2005), 333–340. https://www.researchgate.net/publication/266984781 Google Scholar

[39] A. K. Verma and L. K. Singh, (∆mv, f)-lacunary statistical convergence of order α, Proyecciones. 41 (4) (2022), 791–804. https://doi.org/10.22199/issn.0717-6279-4757 Google Scholar

[40] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, UK, 1979. Google Scholar