Univariate polynomials of consecutive degrees that form a SAGBI basis
Main Article Content
Abstract
In this paper, we provide necessary and sufficient conditions for polynomials of consecutive degrees that form a
SAGBI basis in the univariate polynomial ring. The special case of three polynomials with consecutive degrees is also considered.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] J. Ramírez Alfonsín, Gaps in semigroups, Discrete Math. 308 (18) (2008), 4177–4184. https://www.sciencedirect.com/science/article/pii/S0012365X07006292 Google Scholar
[2] S. Anderson, A. Smith, P. Stewart, M. Tesemma, J. Usatine, A topological structure on certain initial algebras, Topology Appl. 180 (2015), 199–208. https://www.sciencedirect.com/science/article/pii/S0166864114004428 Google Scholar
[3] A. Conca, J. Herzog, G. Valla, Sagbi bases with applications to blow-up algebras, J. reine angew. Math. 474 (1996), 113–138. https://www.degruyterbrill.com/document/doi/10.1515/crll.1996.474.113/html Google Scholar
[4] K. Gatermann, Applications of SAGBI-bases in dynamics, J. Symbolic Comput. 35 (5) (2003), 543–575. https://www.sciencedirect.com/science/article/pii/S074771710300018X Google Scholar
[5] M. Göbel, A constructive description of SAGBI basis for polynomial invariants of permutation groups, J. Symbolic Comput. 26 (3) (1998), 261–272. https://www.sciencedirect.com/science/article/pii/S0747717198902103 Google Scholar
[6] D. Kapur, K. Madlener, A completion procedure for computing a canonical bases for a k-subalgebra, Computers and Mathematics 89, MIT, Cambridge, Mass. (1989), 1–11. Google Scholar
[7] M. Kreuzer, L. Robbiano, Computational Commutative Algebra 2, Springer, Heidelberg, 2005, x+586pp. https://link.springer.com/book/10.1007/3-540-28296-3 Google Scholar
[8] Z. Reichstein, SAGBI bases in rings of multiplicative invariants, Comment. Math. Helv. 78 (1) (2003), 185–202. https://link.springer.com/article/10.1007/s000140300008 Google Scholar
[9] L. Robbiano, M. Sweedler, Subalgebra bases, Lecture Notes in Math. 1430 (1990), 61–87. https://link.springer.com/chapter/10.1007/BFb0085537 Google Scholar
[10] W. Sit, M. Siu, On the subsemigroups of N, Math. Mag. 48 (4) (1975), 225–227. https://www.tandfonline.com/doi/abs/10.1080/0025570X.1975.11976495 Google Scholar
[11] B. Sturmfels, Gröbner Bases and Convex Polytopes, Univ. Lecture Ser. 8 (1996), xii+162pp. https://bookstore.ams.org/view?ProductCode=ULECT/8 Google Scholar
[12] M. Tesemma, On initial algebra of multiplicative invariants, J. Algebra 320 (2008), 3851–3865. https://www.sciencedirect.com/science/article/pii/S0021869308003451 Google Scholar
[13] A. Torstensson, V. Ufnarovski, H. Öfverbeck, Using resultant for SAGBI basis verification in the univariate polynomial ring, J. Symbolic Comput. 40 (2005), 1087–1105. https://www.sciencedirect.com/science/article/pii/S0747717105000775 Google Scholar