A note on best proximity points for $F$-contractive non-self mappings
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] F. G. Abdullayev, V. V. Savchuk, and D. Simsek, Comparison of the best approximation of holomorphic functions from Hardy space, J. Nonlinear Sci. Appl., 12 (7) (2019), 412–419. Google Scholar
[2] I. Altun and A. Taşdemir, On best proximity points of interpolative proximal contractions, Quaes Math., 44 (9) (2020), 1233–1241. Google Scholar
[3] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. Google Scholar
[4] S. Basha, Best proximity point theorems, J. Approx. Theory, 163 (2011), 1772–1781. Google Scholar
[5] S. Basha, N. Shahzad, and R. Jeyaraj, Best proximity points: approximation and optimization, Optim. Lett., 7 (1) (2013), 145–155. Google Scholar
[6] N. Fabiano, Z. Kadelburg, N. Mirkov, V. Ćavić, and S. Radenović, On F-Contractions: A Survey, Contemp. Math., 3 (3) (2022), 327–342. Google Scholar
[7] M. Gabeleh and J. Markin, Some notes on the paper “On best proximity points of interpolative proximal contractions,” Quaes Math., 45 (10) (2021), 1539–1544. Google Scholar
[8] M. Gabeleh, A note on the paper ‘A global optimality result in probabilistic spaces using control function,’ Optimization, 72 (11) (2022), 2739–2744. Google Scholar
[9] M. Gabeleh and P. R. Patle, Best proximity point (pair) results via MNC in Busemann convex metric spaces, Appl. Gen. Topol., 23 (2) (2022), 405–424. Google Scholar
[10] M. Jayapriya, A. Ganesh, Sh. S. Santra, R. Edwan, D. Baleanu, and Kh. M. Khedher, Sawi transform and Hyers-Ulam stability of nth order linear differential equations, J. Math. Comput. Sci., 28 (4) (2023), 393–411. Google Scholar
[11] S. Komal, P. Kumam, and D. Gopal, Best proximity point for Z-contraction and Suzuki type Z-contraction mappings with an application to fractional calculus, Appl. Gen. Topol., 17 (2) (2016), 185–198. Google Scholar
[12] H. Lakzian, D. Gopal, and W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory Appl., 18 (2016), 251–266. Google Scholar
[13] L. N. Mishra, V. Dewangan, V. N. Mishra, and S. Karateke, Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces, J. Math. Comput. Sci., 22 (2) (2021), 97–109. Google Scholar
[14] C. Mongkolkeha and P. Kumam, Best proximity point theorems for cyclic contractions mappings, Background and Recent Developments of Metric Fixed Point Theory (2017), 217–244. Google Scholar
[15] M. Omidvari, S. M. Vaezpour, and R. Saadati, Best proximity point theorems for F-contractive non-self mappings, Miskolc Math. Notes, 15 (2) (2014), 615–623. Google Scholar
[16] P. R. Patle, M. Gabeleh, V. Rakočević, and M. Samei, New best proximity point (pair) theorems via MNC and application to the existence of optimum solutions for a system of ψ-Hilfer fractional differential equations, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (124) (2023). https://doi.org/10.1007/s13398-023-01451-5 Google Scholar
[17] M. Rossafi, A. Kari, C. Park, and J. R. Lee, New fixed point theorems for θ − φ contraction on b-metric spaces, J. Math. Comput. Sci., 29 (1) (2023), 12–27. Google Scholar
[18] P. Saha, S. Guria, S. K. Bhandari, and B. S. Choudhury, A global optimality result in probabilistic spaces using control function, Optimization, 70 (11) (2020), 2387–2400. Google Scholar
[19] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 94 (2012). https://doi.org/10.1186/1687-1812-2012-94 Google Scholar