Geodesics on the Kahler cone of the Heisenberg group
Main Article Content
Abstract
In this paper, we describe the geodesics on the K\"ahler cone of the Heisenberg group. Furthermore, we also prove that this is not a complete manifold.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] C. P. Boyer, "The Sasakian geometry of the Heisenberg group," Bull. Math. Soc. Sci. Math. Roumanie (N.S.), vol. 52 (100), no. 3, pp. 251–262, 2009. Available: https://www.jstor.org/stable/43679134. Google Scholar
[2] L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson, "An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem," Progress in Mathematics, Birkhäuser Verlag, Basel, 2007. Available: https://link.springer.com/book/10.1007/978-3-7643-8133-2. Google Scholar
[3] W. M. Goldman, "Complex hyperbolic geometry," Oxford University Press, 1999. Available: https://global.oup.com/academic/product/complex-hyperbolic-geometry-9780198537939?cc=kr&lang=en. Google Scholar
[4] P. Hajłasz and S. Zimmerman, "Geodesics in the Heisenberg Group," Anal. Geom. Metr. Spaces, vol. 3, no. 1, pp. 325–337, 2015. DOI: https://doi.org/10.1515/agms-2015-0020. Google Scholar
[5] J. Kim, I. D. Platis, and L.-J. Sun, "PCR Kähler equivalent metrics in the Siegel domain," Preprint, arXiv:2304.08079. Available: https://arxiv.org/abs/2304.08079. Google Scholar
[6] V. Marenich, "Geodesics in Heisenberg groups," Geom. Dedicata, vol. 66, no. 2, pp. 175–185, 1997. DOI: https://doi.org/10.1023/A:1004916117293. Google Scholar
[7] G. A. Noskov, "Geodesics in the Heisenberg group: an elementary approach," Sib. Electr. Math. Izv., vol. 5, pp. 177–188, 2008. Available: https://www.mathnet.ru/links/16ac4640d6fec467299dc3a252b69f11/semr97.pdf. Google Scholar
[8] J. R. Parker, "Notes on Complex Hyperbolic Geometry." Available: https://maths.dur.ac.uk/users/j.r.parker/img/NCHG.pdf. Google Scholar
[9] I. D. Platis and L.-J. Sun, "Half plane geometries: zero and unbounded negative curvature," Preprint, arXiv:2111.07569. Available: https://arxiv.org/abs/2111.07569. Google Scholar