Korean J. Math. Vol. 21 No. 2 (2013) pp.203-212
DOI: https://doi.org/10.11568/kjm.2013.21.2.203

Multiplicity results for the wave system using the linking theorem

Main Article Content

Hyewon Nam

Abstract

We investigate the existence of solutions of the one-dimensional wave system \begin{eqnarray*} & u_{tt} - u_{xx} + \mu g(u+v)= f(u+v) \qquad \mbox{ in } (- {\frac{\pi}{2}} , {\frac{\pi}{2}} ) \times R , \\ & v_{tt} - v_{xx} + \nu g(u+v)= f(u+v) \qquad \mbox{ in } (- {\frac{\pi}{2}} , {\frac{\pi}{2}} ) \times R , \end{eqnarray*} with Dirichlet boundary condition. We find them by applying linking inequlaities.


Article Details