Existence theorems and evaluation formulas for sequential Yeh-Feynman integrals
Main Article Content
Abstract
We establish the existence of the sequential Yeh-Feynman integral for functionals of the form $F(x)=G(x)\Psi(x(S,T))$, where $G$ belongs to a Banach algebra of sequential Yeh-Feynman integrable functionals and $\Psi$ need not be bounded or continuous. We also give formulas evaluating the integrals of these functionals. Note that these functionals are often employed in the application of the Feynman integral to quantum theory, and $\Psi$ corresponds to the initial condition associated with Schr\"odinger equation.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
Supporting Agencies
References
[1] J. M. Ahn, K. S. Chang, and I. Yoo, "Some Banach algebras of Yeh-Feynman integrable functionals," J. Korean Math. Soc., vol. 24, pp. 257–266, 1987. Google Scholar
[2] E. Berkson and T. A. Gillespie, "Absolutely continuous functions of two variables and well-bounded operators," J. London Math. Soc., vol. 30, pp. 305–321, 1984. DOI: https://doi.org/10.1112/jlms/s2-30.2.305. Google Scholar
[3] R. H. Cameron and D. A. Storvick, "Some Banach algebras of analytic Feynman integrable functionals," Analytic Functions Kozubnik 1979, Lecture Notes in Mathematics, vol. 798, pp. 18–67, Springer-Verlag, Berlin, 1980. DOI: https://doi.org/10.1007/bfb0097256. Google Scholar
[4] R. H. Cameron and D. A. Storvick, "A simple definition of the Feynman integral, with applications," Mem. Amer. Math. Soc., No. 288, Amer. Math. Soc., 1983. DOI: https://doi.org/10.1090/memo/0288. Google Scholar
[5] R. H. Cameron and D. A. Storvick, "Sequential Fourier-Feynman transforms," Ann. Acad. Sci. Fenn., vol. 10, pp. 107–111, 1985. DOI: https://doi.org/10.5186/aasfm.1985.1013. Google Scholar
[6] R. H. Cameron and D. A. Storvick, "New existence theorems and evaluation formulas for sequential Feynman integrals," Proc. London Math. Soc., vol. 52, pp. 557–581, 1986. DOI: https://doi.org/10.1112/plms/s3-52.3.557. Google Scholar
[7] R. H. Cameron and D. A. Storvick, "New existence theorems and evaluation formulas for analytic Feynman integrals," Deformations Math. Struct., Complex Analy. Phys. Appl., Kluwer Acad. Publ., Dordrecht, pp. 297–308, 1989. DOI: https://doi.org/10.1007/978-94-009-2643-1_27. Google Scholar
[8] K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, "Sequential Fourier-Feynman transform, convolution and first variation," Trans. Amer. Math. Soc., vol. 360, pp. 1819–1838, 2008. DOI: https://doi.org/10.1090/S0002-9947-07-04383-8. Google Scholar
[9] K. S. Chang, J. G. Kim, and I. Yoo, "Relationships between the sequential Yeh-Feynman integral and Truman integral," Bull. Korean Math. Soc., vol. 24, pp. 173–180, 1987. Google Scholar
[10] K. S. Chang, J. G. Kim, I. Yoo, and K. S. Choi, "Sequential Yeh-Feynman integrals of certain classes of functionals," Commun. Korean Math. Soc., vol. 3, pp. 213–224, 1988. Google Scholar
[11] J. G. Choi, "Yeh-Fourier-Feynman transforms and convolutions associated with Gaussian processes," Ann. Funct. Anal., vol. 12, pp. 12–41, 2021. DOI: https://doi.org/10.1007/s43034-021-00128-7. Google Scholar
[12] B. S. Kim, "Integral transforms of square integrable functionals on Yeh-Wiener space," Kyungpook Math. J., vol. 40, pp. 155–166, 2009. DOI: https://doi.org/10.5666/KMJ.2009.49.1.155. Google Scholar
[13] B. S. Kim, "Generalized first variation and generalized sequential Fourier-Feynman transform," Korean J. Math., vol. 31, pp. 521–536, 2023. DOI: https://doi.org/10.11568/kjm.2023.31.4.521. Google Scholar
[14] B. S. Kim and Y. K. Yang, "Fourier-Yeh-Feynman transform and convolution on Yeh-Wiener space," Korean J. Math., vol. 16, pp. 335–348, 2008. Google Scholar
[15] B. S. Kim and I. Yoo, "Generalized sequential convolution product for the generalized sequential Fourier-Feynman transform," Korean J. Math., vol. 29, pp. 321–332, 2021. DOI: https://doi.org/10.11568/kjm.2021.29.2.321. Google Scholar
[16] J. Yeh, "Wiener measure in a space of functions of two variables," Trans. Amer. Math. Soc., vol. 95, pp. 433–450, 1960. DOI: https://doi.org/10.2307/1993566. Google Scholar
[17] J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1973. Google Scholar
[18] I. Yoo and B. S. Kim, "Generalized sequential Feynman integral and Fourier-Feynman transform," Rocky Mountain J. Math., vol. 51, pp. 2251–2268, 2021. DOI: https://doi.org/10.1216/rmj.2021.51.2251. Google Scholar