Generalized $\eta$-duals of Banach space valued difference sequence spaces
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] B. Altay and F. Bașar, "The fine spectrum and the matrix domain of the difference operator ∆ on the sequence space lp," Comm. Math. Anal., 2(2), 2007. Available: https://www.researchgate.net/publication/26489984. Google Scholar
[2] F. Bașar and B. Altay, "On the space of sequences of p-bounded variation and related matrix mappings," Ukrainian Math. J., vol. 55, pp. 136–147, 2003. DOI: https://doi.org/10.1023/A:1025080820961. Google Scholar
[3] C. A. Bektaș and R. Çolak, "On some generalized difference sequence spaces," Thai J. Math., vol. 1(3), pp. 83–98, 2005. Available: https://www.researchgate.net/publication/268859083. Google Scholar
[4] C. A. Bektaș, M. Et, and R. Çolak, "Generalized difference sequence spaces and their dual spaces," J. Math. Anal. Appl., vol. 292(2), pp. 423–432, 2004. DOI: https://doi.org/10.1016/j.jmaa.2003.12.006. Google Scholar
[5] V. K. Bhardwaj and S. Gupta, "On β-dual of Banach space valued difference sequence spaces," Ukrainian Math. J., vol. 65(8), 2013. DOI: https://doi.org/10.1007/s11253-014-0857-3. Google Scholar
[6] O. Duyar, "On some new vector valued sequence spaces E(X,λ,p)," AIMS Math., vol. 8(6), pp. 13306–13316, 2023. DOI: https://doi.org/10.3934/math.2023673. Google Scholar
[7] M. Et and R. Çolak, "On some generalized difference sequence spaces," Soochow J. Math., vol. 21(4), pp. 377–386, 1995. Available: https://www.researchgate.net/publication/284263561. Google Scholar
[8] M. Et and A. Esi, "On Köthe-Toeplitz duals of generalized difference sequence spaces," Bull. Malays. Math. Sci. Soc., vol. 23(1), pp. 25–32, 2000. Available: https://www.researchgate.net/publication/247009485. Google Scholar
[9] C. Gnanaseelan and P. D. Srivastva, "The α-, β-, γ-duals of some generalized difference sequence spaces," Indian J. Math., vol. 38(2), pp. 111–120, 1996. Google Scholar
[10] S. Gupta, Ritu, and M. Kumar, "Generalized α-Köthe Toeplitz duals of certain difference sequence spaces," Korean J. Math., vol. 32(2), pp. 219–228, 2024. DOI: https://doi.org/10.11568/kjm.2024.32.2.219. Google Scholar
[11] Haryadi, Supama, and A. Zulijanto, "Köthe-Toeplitz duals of the Cesàro sequence spaces defined on a generalized Orlicz space," Global J. Pure Appl. Math., vol. 14(4), pp. 591–601, 2018. Available: https://www.ripublication.com/gjpam18/gjpamv14n4_06.pdf. Google Scholar
[12] S. A. Khan, "Cesàro difference sequence spaces and its duals," Int. J. Math. Appl., vol. 11(1), pp. 41–48, 2023. Available: http://ijmaa.in/index.php/ijmaa/article/view/883. Google Scholar
[13] H. Kizmaz, "On certain sequence spaces," Canad. Math. Bull., vol. 24(2), pp. 169–176, 1981. DOI: https://doi.org/10.4153/CMB-1981-027-5. Google Scholar
[14] P. K. Kamthan and M. Gupta, "Sequence Spaces and Series," Marcel Dekker, Inc., New York and Basel. Available: https://books.google.co.in/books?id=-HoZAQAAIAAJ. Google Scholar
[15] I. J. Maddox, "Infinite matrices of operators," Lecture Notes Math., Springer, Berlin, 1980. DOI: https://doi.org/10.1007/bfb0088196. Google Scholar
[16] E. Malkowsky, M. Mursaleen, and S. Suantai, "The dual spaces of sets of difference sequences of order m and matrix transformations," Acta Math. Sin. (Engl. Ser.), vol. 23(3), pp. 521–532, 2007. DOI: https://doi.org/10.1007/s10114-005-0719-x. Google Scholar
[17] E. Malkowsky and S. D. Parashar, "Matrix transformations in spaces of bounded and convergent difference sequences of order m," Analysis, vol. 17(1), pp. 87–98, 1997. DOI: https://doi.org/10.1524/anly.1997.17.1.87. Google Scholar
[18] N. Rath, "Operator duals of some sequence-spaces," Indian J. Pure Appl. Math., vol. 20(10), pp. 953–963, 1989. Google Scholar
[19] A. Robinson, "On functional transformations and summability," Proc. London Math. Soc., 1950. DOI: https://doi.org/10.1112/plms/s2-52.2.132. Google Scholar
[20] J. K. Srivastava and B. K. Srivastava, "Generalized sequence space c0(X,λ,p)," Indian J. Pure Appl. Math., vol. 27, pp. 73–84, 1996. Google Scholar
[21] S. Suantai and W. Sanhan, "On β-dual of vector-valued sequence spaces of Maddox," Int. J. Math. Math. Sci., vol. 30, pp. 385–392, 2001. DOI: https://doi.org/10.1155/s0161171202012772. Google Scholar