Korean J. Math. Vol. 32 No. 4 (2024) pp.791-799
DOI: https://doi.org/10.11568/kjm.2024.32.4.791

Generalized $\eta$-duals of Banach space valued difference sequence spaces

Main Article Content

Sandeep Kumar
Naveen Sharma

Abstract

In the present paper, we get an opportunity to introduce and study the notion of generalized $\eta$-dual for Banach space valued difference sequence spaces, as a generalization of the classical $\alpha$-Köthe Toeplitz dual for scalar sequences. We obtain a set of necessary and sufficient conditions for $(A_k)\in E^\eta(X, \Delta) $, where $E \in \{ \ell_\infty,\,c,\,c_0 \}$. Moreover, we explore the notion of generalized $\eta$-dual for generalized difference sequence spaces $ E(X,\Delta^r)$ and $E(X,\Delta_\nu)$, where $r\in\mathbb{N}$ and $\nu$ is a multiplier sequence.


Article Details

References

[1] B. Altay and F. Bașar, "The fine spectrum and the matrix domain of the difference operator ∆ on the sequence space lp," Comm. Math. Anal., 2(2), 2007. Available: https://www.researchgate.net/publication/26489984. Google Scholar

[2] F. Bașar and B. Altay, "On the space of sequences of p-bounded variation and related matrix mappings," Ukrainian Math. J., vol. 55, pp. 136–147, 2003. DOI: https://doi.org/10.1023/A:1025080820961. Google Scholar

[3] C. A. Bektaș and R. Çolak, "On some generalized difference sequence spaces," Thai J. Math., vol. 1(3), pp. 83–98, 2005. Available: https://www.researchgate.net/publication/268859083. Google Scholar

[4] C. A. Bektaș, M. Et, and R. Çolak, "Generalized difference sequence spaces and their dual spaces," J. Math. Anal. Appl., vol. 292(2), pp. 423–432, 2004. DOI: https://doi.org/10.1016/j.jmaa.2003.12.006. Google Scholar

[5] V. K. Bhardwaj and S. Gupta, "On β-dual of Banach space valued difference sequence spaces," Ukrainian Math. J., vol. 65(8), 2013. DOI: https://doi.org/10.1007/s11253-014-0857-3. Google Scholar

[6] O. Duyar, "On some new vector valued sequence spaces E(X,λ,p)," AIMS Math., vol. 8(6), pp. 13306–13316, 2023. DOI: https://doi.org/10.3934/math.2023673. Google Scholar

[7] M. Et and R. Çolak, "On some generalized difference sequence spaces," Soochow J. Math., vol. 21(4), pp. 377–386, 1995. Available: https://www.researchgate.net/publication/284263561. Google Scholar

[8] M. Et and A. Esi, "On Köthe-Toeplitz duals of generalized difference sequence spaces," Bull. Malays. Math. Sci. Soc., vol. 23(1), pp. 25–32, 2000. Available: https://www.researchgate.net/publication/247009485. Google Scholar

[9] C. Gnanaseelan and P. D. Srivastva, "The α-, β-, γ-duals of some generalized difference sequence spaces," Indian J. Math., vol. 38(2), pp. 111–120, 1996. Google Scholar

[10] S. Gupta, Ritu, and M. Kumar, "Generalized α-Köthe Toeplitz duals of certain difference sequence spaces," Korean J. Math., vol. 32(2), pp. 219–228, 2024. DOI: https://doi.org/10.11568/kjm.2024.32.2.219. Google Scholar

[11] Haryadi, Supama, and A. Zulijanto, "Köthe-Toeplitz duals of the Cesàro sequence spaces defined on a generalized Orlicz space," Global J. Pure Appl. Math., vol. 14(4), pp. 591–601, 2018. Available: https://www.ripublication.com/gjpam18/gjpamv14n4_06.pdf. Google Scholar

[12] S. A. Khan, "Cesàro difference sequence spaces and its duals," Int. J. Math. Appl., vol. 11(1), pp. 41–48, 2023. Available: http://ijmaa.in/index.php/ijmaa/article/view/883. Google Scholar

[13] H. Kizmaz, "On certain sequence spaces," Canad. Math. Bull., vol. 24(2), pp. 169–176, 1981. DOI: https://doi.org/10.4153/CMB-1981-027-5. Google Scholar

[14] P. K. Kamthan and M. Gupta, "Sequence Spaces and Series," Marcel Dekker, Inc., New York and Basel. Available: https://books.google.co.in/books?id=-HoZAQAAIAAJ. Google Scholar

[15] I. J. Maddox, "Infinite matrices of operators," Lecture Notes Math., Springer, Berlin, 1980. DOI: https://doi.org/10.1007/bfb0088196. Google Scholar

[16] E. Malkowsky, M. Mursaleen, and S. Suantai, "The dual spaces of sets of difference sequences of order m and matrix transformations," Acta Math. Sin. (Engl. Ser.), vol. 23(3), pp. 521–532, 2007. DOI: https://doi.org/10.1007/s10114-005-0719-x. Google Scholar

[17] E. Malkowsky and S. D. Parashar, "Matrix transformations in spaces of bounded and convergent difference sequences of order m," Analysis, vol. 17(1), pp. 87–98, 1997. DOI: https://doi.org/10.1524/anly.1997.17.1.87. Google Scholar

[18] N. Rath, "Operator duals of some sequence-spaces," Indian J. Pure Appl. Math., vol. 20(10), pp. 953–963, 1989. Google Scholar

[19] A. Robinson, "On functional transformations and summability," Proc. London Math. Soc., 1950. DOI: https://doi.org/10.1112/plms/s2-52.2.132. Google Scholar

[20] J. K. Srivastava and B. K. Srivastava, "Generalized sequence space c0(X,λ,p)," Indian J. Pure Appl. Math., vol. 27, pp. 73–84, 1996. Google Scholar

[21] S. Suantai and W. Sanhan, "On β-dual of vector-valued sequence spaces of Maddox," Int. J. Math. Math. Sci., vol. 30, pp. 385–392, 2001. DOI: https://doi.org/10.1155/s0161171202012772. Google Scholar