Korean J. Math. Vol. 33 No. 1 (2025) pp.21-35
DOI: https://doi.org/10.11568/kjm.2025.33.1.21-35

A characterization of S1-projective modules

Main Article Content

Hwankoo Kim
Najib Mahdou
El Houssaine Oubouhou

Abstract

Recently, Zhao, Pu, Chen, and Xiao introduced and investigated novel concepts regarding S-torsion exact sequences, S-torsion commutative diagrams, and Si-projective modules (for i=1,2) in the context of a commutative ring R and a multiplicative subset S of R. Their research included various results, such as proving that an R-module is S1-projective if it is S-torsion isomorphic to a projective module. In this paper, we further examine properties of S-torsion exact sequences and S-torsion commutative diagrams, and we establish the equivalence between an R-module being S1-projective and its S-torsion isomorphism to a projective module.



Article Details

References

[1] D. F. Anderson and A. Badawi, On ϕ-Prüfer rings and ϕ-Bézout rings, Houston J. Math., 30(2) (2004), 331–343. Google Scholar

[2] A. Badawi, On divided commutative rings, Comm. Algebra, 27(3) (1999), 1465–1474. https://doi.org/10.1080/00927879908826507. Google Scholar

[3] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra, 31(4) (2003), 1669–1677. Google Scholar

[4] A. Badawi, On rings with divided nil ideal: a survey, in: M. Fontana et al. (eds.), Commutative Algebra and Its Applications, Walter de Gruyter, Berlin, (2009), 21–40. Google Scholar

[5] H. Kim, N. Mahdou, and E. H. Oubouhou, A characterization of nonnil-projective modules, Kyungpook Math. J., 64(1) (2024), 1–14. https://doi.org/10.5666/KMJ.2024.64.1.1. Google Scholar

[6] H. Kim, N. Mahdou, and E. H. Oubouhou, When every ideal is ϕ-P-flat, Hacet. J. Math. Stat., 52(3) (2022), 708–720. Google Scholar

[7] H. Kim, N. Mahdou, and E. H. Oubouhou, ϕ-rings from a module-theoretic point of view: a survey, Moroccan J. Algebra Geom. Appl., 3(1) (2024), 78–114. Google Scholar

[8] H. Kim, N. Mahdou, E. H. Oubouhou, and X. Zhang, Uniformly S-projective modules and uniformly S-projective uniformly S-covers, Kyungpook Math. J., 64 (2024), 607–618. Google Scholar

[9] Z. K. Liu and X. Y. Yang, On nonnil-Noetherian rings, Southeast Asian Bull. Math., 33(6) (2009), 1215–1223. Google Scholar

[10] Y. Pu, M. Wang, and W. Zhao, On nonnil-commutative diagrams and nonnil-projective modules, Comm. Algebra, 50(7) (2022), 2854–2867. Google Scholar

[11] Y. Pu, M. Chen, X. Xiao, and W. Zhao, On S-torsion exact sequences and Si-projective modules (i = 1,2), J. Algebra Appl., (2022), 2350086. https://doi.org/10.1142/S021949882350086X. Google Scholar

[12] W. Qi and X. L. Zhang, Some remarks on nonnil-coherent rings and ϕ-IF rings, J. Algebra Appl., 21(11) (2021), 2250211. Google Scholar

[13] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Springer, Singapore, (2016). Google Scholar

[14] X. L. Zhang and W. Qi, Characterizing S-projective modules and S-semisimple rings by uniformity, J. Commut. Algebra, 15(1) (2023), 139–149. https://doi.org/10.1216/jca.2023.15.139. Google Scholar

[15] X. L. Zhang and W. Zhao, On w-ϕ-flat modules and their homological dimensions, Bull. Korean Math. Soc., 58(4) (2021), 1039–1052. Google Scholar

[16] X. L. Zhang and W. Zhao, On nonnil-injective modules, J. Sichuan Normal Univ., 42(6) (2009), 808–815. Google Scholar

[17] X. L. Zhang, F. Wang, and W. Zhao, On ϕ-projective modules and ϕ-Prüfer rings, Comm. Algebra, 48(7) (2020), 3079–3090. Google Scholar

[18] W. Zhao, F. Wang, and G. Tang, On ϕ-von Neumann regular rings, J. Korean Math. Soc., 50(1) (2013), 219–229. https://doi.org/10.4134/JKMS.2013.50.1.219. Google Scholar

[19] W. Zhao, On ϕ-exact sequences and ϕ-projective modules, J. Korean Math. Soc., 58(6) (2021), 1513–1528. Google Scholar

[20] W. Zhao, On ϕ-flat modules and ϕ-Prüfer rings, J. Korean Math. Soc., 55(5) (2018), 1221–1233. Google Scholar