Generalized hilbert operator on bergman spaces
Main Article Content
Abstract
We consider the generalized Hilbert operator
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
Supporting Agencies
References
[1] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, 1999. https://www.cambridge.org/9780521623216. Google Scholar
[2] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. https://doi.org/10.1201/9781315139920. Google Scholar
[3] E. Diamantopoulos, Hilbert matrix on Bergman spaces, Illinois J. Math., 48(3) (2004), 1067-1078. https://doi.org/10.1215/ijm/1258131071. Google Scholar
[4] E. Diamantopoulos and A. G. Siskakis, Composition operators and the Hilbert matrix, Studia Math., 140 (2000), 191-198. https://doi.org/10.4064/sm-140-2-191-198. Google Scholar
[5] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000. https://doi.org/10.1007/978-1-4612-0497-8. Google Scholar
[6] S. Li, Generalized Hilbert operator on Dirichlet-type space, Appl. Math. Comput., 214 (2009), 304-309. https://doi.org/10.1016/j.amc.2009.03.073. Google Scholar
[7] S. Li and S. Stević, Generalized Hilbert operator and Fejér-Riesz type inequalities on the polydisc, Acta Math. Sci., 29(B)(1) (2009), 191-200. https://doi.org/10.1016/S0252-9602(09)60020-5. Google Scholar
[8] S. Naik, Generalized Cesàro operators on certain function spaces, Ann. Polon. Math., 98(2) (2010), 189-199. Google Scholar
[9] S. Naik, Cesàro type operators on spaces of analytic functions, Filomat, 25(4) (2011), 85-97. https://doi.org/10.2298/FIL1104085N. Google Scholar
[10] S. Naik, Generalized Cesàro operator on BMOA space, J. Anal., 29(1) (2021), 315-323. https://doi.org/10.1007/s41478-020-00266-6. Google Scholar
[11] S. Naik, Cesàro operator of order α on Bloch type spaces, J. Anal., 32(4) (2024), 2639-2646. https://doi.org/10.1007/s41478-024-00755-y. Google Scholar
[12] S. Naik and P. K. Nath, Generalized Hilbert type operator on Hardy spaces, Comm. Math. Appl., 6(1) (2015), 1-8. Google Scholar
[13] S. Naik and K. Rajbangoshi, Generalized Hilbert operators on Bergman and Dirichlet spaces of analytic functions, Bull. Pol. Acad. Sci., 63(3) (2015), 227-235. https://doi.org/10.4064/ba8031-1-2016. Google Scholar
[14] A. G. Siskakis, Composition semigroups and the Cesàro operator on Hᵖ, J. London Math. Soc., 36(2) (1987), 153-164. https://doi.org/10.1112/jlms/s2-36.1.153. Google Scholar
[15] A. G. Siskakis, On the Bergman space norm of the Cesàro operator, Arch. Math. (Basel), 67 (1996), 312-318. https://doi.org/10.1007/BF01197596. Google Scholar
[16] D. Vukotić, A sharp estimate for Aᵖₐ functions in Cⁿ, Proc. Amer. Math. Soc., 117 (1993), 753-756. https://doi.org/10.2307/2159138. Google Scholar