$\ast$-Ricci-Yamabe Soliton and Contact Geometry
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] Y. Akrami, T. S. Koivisto and A. R. Solomon, The nature of spacetime in bigravity: two metrics or none?, Gen. Relativ. Grav. 47 (2015), 1838. https://doi.org/10.1007/s10714-014-1838-4 Google Scholar
[2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer, Berlin, 1976. https://doi.org/10.1007/BFb0079307 Google Scholar
[3] D. E. Blair, Two remarks on contact metric structure, Tohoku Math. J. 29 (1977), 319–324. https://doi.org/10.2748/tmj/1178240602 Google Scholar
[4] D. E. Blair, Riemannian geometry on contact and symplectic manifolds, Progress in Mathematics, Vol. 203, Birkhäuser, Boston, 2010. https://doi.org/10.1007/978-0-8176-4959-3 Google Scholar
[5] W. Boskoff and M. Crasmareanu, A Rosen type bi-metric universe and its physical properties, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850174. https://doi.org/10.1142/S0219887818501748 Google Scholar
[6] C. P. Boyer, K. Galicki and P. Matzeu, On η-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), 177–208. https://doi.org/10.1007/s00220-005-1459-6 Google Scholar
[7] P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Vacuum configuration for superstrings, Nuclear Phys. B 258 (1985), 46–74. https://doi.org/10.1016/0550-3213(85)90602-9 Google Scholar
[8] D. Dey, Almost Kenmotsu metric as Ricci–Yamabe soliton, arXiv:2005.02322v1 [math.DG]. https://arxiv.org/abs/2005.02322 Google Scholar
[9] D. Dey and P. Majhi, *-Critical point equation on N(k)-contact manifolds, Bull. Transilv. Univ. Brasov, Ser. III 12 (2019), 275–282. Google Scholar
[10] D. Dey and P. Majhi, *-Ricci solitons and *-gradient Ricci solitons on 3-dimensional trans-Sasakian manifolds, Commun. Korean Math. Soc. 35 (2020), 625–637. https://doi.org/10.4134/CKMS.c190121 Google Scholar
[11] A. Ghosh and D. S. Patra, *-Ricci solitons within the framework of Sasakian and (k, µ)-contact manifold, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850120. https://doi.org/10.1142/S0219887818501207 Google Scholar
[12] B. S. Guilfoyle, Einstein metrics adapted to a contact structure on 3-manifolds, Preprint, arXiv:math/0012027v1 [math.DG] (2000). https://arxiv.org/abs/math/0012027 Google Scholar
[13] B. S. Guilfoyle, The local moduli of Sasakian 3-manifolds, Int. J. Math. Math. Sci. 32 (2002), 117–127. https://doi.org/10.1155/S0161171202006774 Google Scholar
[14] S. Güler and M. Crasmareanu, Ricci–Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk. J. Math. 43 (2019), 2361–2641. https://doi.org/10.3906/mat-1902-38 Google Scholar
[15] G. Kaimakamis and K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408–413. https://doi.org/10.1016/j.geomphys.2014.09.004 Google Scholar
[16] J. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theoret. Phys. 38 (1999), 1113–1133. https://doi.org/10.1023/A:1026654312961 Google Scholar
[17] S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401–404. https://doi.org/10.1215/S0012-7094-41-00832-3 Google Scholar
[18] S. Tanno, Ricci curvature of contact Riemannian manifolds, Tohoku Math. J. 40 (1988), 441–448. https://doi.org/10.2748/tmj/1178227769 Google Scholar
[19] K. Yano, Integral formulas in Riemannian Geometry, Marcel Dekker, New York, 1970. https://doi.org/10.1017/S0008439500031520 Google Scholar