Korean J. Math. Vol. 33 No. 4 (2025) pp.303-315
DOI: https://doi.org/10.11568/kjm.2025.33.4.303

$\ast$-Ricci-Yamabe Soliton and Contact Geometry

Main Article Content

Dibakar Dey

Abstract

It is well known that a unit sphere admits Sasakian 3-structure. Also, Sasakian manifolds are locally isometric to a unit sphere under several curvature and critical conditions. So, a natural question is: Does there exist any curvature or critical condition under which a Sasakian 3-manifold represents a geometrical object other than the unit sphere? In this regard, as an extension of the $\ast$-Ricci soliton, the notion of $\ast$-Ricci-Yamabe soliton is introduced and studied on two classes contact metric manifolds. A $(2n + 1)$-dimensional non-Sasakian $N(k)$-contact metric manifold admitting $\ast$-Ricci-Yamabe soliton is completely classified. Further, it is proved that if a Sasakian 3-manifold $M$ admits $\ast$-Ricci-Yamabe soliton $(g,V,\lambda,\alpha,\beta)$ under certain conditions on the soliton vector field $V$, then $M$ is $\ast$-Ricci flat, positive Sasakian and the transverse geometry of $M$ is Fano. In addition, the Sasakian 3-metric $g$ is homothetic to a Berger sphere and the soliton is steady. Also, the potential vector field $V$ is an infinitesimal automorphism of the contact metric structure.


Article Details

References

[1] Y. Akrami, T. S. Koivisto and A. R. Solomon, The nature of spacetime in bigravity: two metrics or none?, Gen. Relativ. Grav. 47 (2015), 1838. https://doi.org/10.1007/s10714-014-1838-4 Google Scholar

[2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer, Berlin, 1976. https://doi.org/10.1007/BFb0079307 Google Scholar

[3] D. E. Blair, Two remarks on contact metric structure, Tohoku Math. J. 29 (1977), 319–324. https://doi.org/10.2748/tmj/1178240602 Google Scholar

[4] D. E. Blair, Riemannian geometry on contact and symplectic manifolds, Progress in Mathematics, Vol. 203, Birkhäuser, Boston, 2010. https://doi.org/10.1007/978-0-8176-4959-3 Google Scholar

[5] W. Boskoff and M. Crasmareanu, A Rosen type bi-metric universe and its physical properties, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850174. https://doi.org/10.1142/S0219887818501748 Google Scholar

[6] C. P. Boyer, K. Galicki and P. Matzeu, On η-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), 177–208. https://doi.org/10.1007/s00220-005-1459-6 Google Scholar

[7] P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Vacuum configuration for superstrings, Nuclear Phys. B 258 (1985), 46–74. https://doi.org/10.1016/0550-3213(85)90602-9 Google Scholar

[8] D. Dey, Almost Kenmotsu metric as Ricci–Yamabe soliton, arXiv:2005.02322v1 [math.DG]. https://arxiv.org/abs/2005.02322 Google Scholar

[9] D. Dey and P. Majhi, *-Critical point equation on N(k)-contact manifolds, Bull. Transilv. Univ. Brasov, Ser. III 12 (2019), 275–282. Google Scholar

[10] D. Dey and P. Majhi, *-Ricci solitons and *-gradient Ricci solitons on 3-dimensional trans-Sasakian manifolds, Commun. Korean Math. Soc. 35 (2020), 625–637. https://doi.org/10.4134/CKMS.c190121 Google Scholar

[11] A. Ghosh and D. S. Patra, *-Ricci solitons within the framework of Sasakian and (k, µ)-contact manifold, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850120. https://doi.org/10.1142/S0219887818501207 Google Scholar

[12] B. S. Guilfoyle, Einstein metrics adapted to a contact structure on 3-manifolds, Preprint, arXiv:math/0012027v1 [math.DG] (2000). https://arxiv.org/abs/math/0012027 Google Scholar

[13] B. S. Guilfoyle, The local moduli of Sasakian 3-manifolds, Int. J. Math. Math. Sci. 32 (2002), 117–127. https://doi.org/10.1155/S0161171202006774 Google Scholar

[14] S. Güler and M. Crasmareanu, Ricci–Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk. J. Math. 43 (2019), 2361–2641. https://doi.org/10.3906/mat-1902-38 Google Scholar

[15] G. Kaimakamis and K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408–413. https://doi.org/10.1016/j.geomphys.2014.09.004 Google Scholar

[16] J. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theoret. Phys. 38 (1999), 1113–1133. https://doi.org/10.1023/A:1026654312961 Google Scholar

[17] S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401–404. https://doi.org/10.1215/S0012-7094-41-00832-3 Google Scholar

[18] S. Tanno, Ricci curvature of contact Riemannian manifolds, Tohoku Math. J. 40 (1988), 441–448. https://doi.org/10.2748/tmj/1178227769 Google Scholar

[19] K. Yano, Integral formulas in Riemannian Geometry, Marcel Dekker, New York, 1970. https://doi.org/10.1017/S0008439500031520 Google Scholar