Some lower bound estimates for the generalized derivative of a polynomial
Main Article Content
Abstract
\begin{align*}
Re\left(z\frac{P^\prime(z)}{P(z)}\right) \geq \frac{n}{1+k}\left\lbrace 1 + \frac{k}{n}\left(\frac{k^{n}\left|a_n\right| - \left|a_0\right|}{k^{n}\left|a_n\right| + \left|a_0\right|}\right)\right\rbrace.
\end{align*}
In this paper, we extend this inequality to the generalised derivative by taking $s$-folded zeros at origin. As an application, we obtain some lower bound estimates for the generalized derivative and generalized polar derivative of a polynomial with restricted zeros, which include various results due to Tur\'{a}n, Malik, Dubinin, Aziz, Rather and Govil as special cases.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] A. Aziz, Inequalities for the derivative of a polynomial, Proc. Amer. Math. Soc. 89 (1983), 259–266. Google Scholar
[2] A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory 55 (2) (1988), 183–193. https://doi.org/10.1016/0021-9045(88)90085-8 Google Scholar
[3] A. Aziz and N. A. Rather, A refinement of a Theorem of Paul Turán concerning polynomials, Math. Inequal. Appl. 1 (1998), 231–238. https://doi.org/10.7153/mia-01-21 Google Scholar
[4] F. A. Bhat, N. A. Rather and S. Gulzar, Inequalities for the generalised derivative of a complex polynomial, Publ. Inst. Math. (Beograd) (N.S.) 114 (128) (2023), 71–80. https://doi.org/10.2298/PIM2328071B Google Scholar
[5] V. N. Dubinin, Applications of the Schwarz lemma to inequalities for entire functions with constraints on zeros, J. Math. Sci. 143 (2007), 3069–3076. https://doi.org/10.1007/s10958-007-0192-4 Google Scholar
[6] N. K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc. 41 (1973), 543–546. Google Scholar
[7] N. K. Govil and P. Kumar, On sharpening of an inequality of Paul Turán, Appl. Anal. Discrete Math. 13 (2019), 711–720. https://doi.org/10.2298/AADM190326028G Google Scholar
[8] A. Liman, I. Q. Peer and W. M. Shah, On some inequalities concerning the polar derivative of a polynomial, Ramanujan J. 38 (2015), 349–360. https://doi.org/10.1007/s11139-014-9640-1 Google Scholar
[9] M. A. Malik, On the derivative of a polynomial, J. Lond. Math. Soc. 2 (1969), 57–60. https://doi.org/10.1112/jlms/s2-1.1.57 Google Scholar
[10] M. Marden, Geometry of Polynomials, Math. Surveys, Amer. Math. Soc., Providence, RI (1989). Google Scholar
[11] G. V. Milovanović, D. S. Mitrinović and T. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore (1994). https://doi.org/10.1142/1284 Google Scholar
[12] I. Qasim, Bernstein-type inequalities involving polar derivative of a polynomial, Lobachevskii J. Math. 42 (2021), 173–183. https://doi.org/10.1134/S1995080221010224 Google Scholar
[13] I. Qasim, New integral mean estimates for the polar derivative of a polynomial, Lobachevskii J. Math. 39 (2018), 1407–1418. https://doi.org/10.1134/S1995080218090445 Google Scholar
[14] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York (2002). https://global.oup.com/academic/product/analytic-theory-of-polynomials-9780198534938 Google Scholar
[15] N. A. Rather, I. Dar and A. Iqbal, Some inequalities for polynomials with restricted zeros, Ann. Univ. Ferrara 67 (2021), 183–189. https://doi.org/10.1007/s11565-020-00353-3 Google Scholar
[16] N. A. Rather, A. Iqbal and I. Dar, Inequalities concerning the polar derivatives of polynomials with restricted zeros, Nonlinear Funct. Anal. Appl. 24 (2019), 813–826. Google Scholar
[17] N. A. Rather, L. Ali, M. Shafi and I. Dar, Inequalities for the generalized polar derivative of a polynomial, Palestine J. Math. 11 (2022), 549–557. https://pjm.ppu.edu/sites/default/files/papers/PJM_May_%283%292022_549_to_557.pdf Google Scholar
[18] N. A. Rather, N. Wani, T. Bhat and I. Dar, Inequalities for the generalized polar derivative of a polynomial, Int. J. Nonlinear Anal. Appl. (2024), 1–7. https://doi.org/10.22075/ijnaa.2024.24504.2759 Google Scholar
[19] J. Sz.-Nagy, Verallgemeinerung der Derivierten in der Geometrie der Polynome, Acta Univ. Szeged. Sect. Sci. Math. 13 (1950), 169–178. Google Scholar
[20] A. C. Schaeffer, Inequalities of A. Markoff and S. N. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941), 565–579. Google Scholar
[21] P. Turán, Über die Ableitung von Polynomen, Compos. Math. 7 (1939), 89–95. Google Scholar