Solution and stability of a functional equation deriving from additive, quadratic and quartic in quasi-Banach spaces
Main Article Content
Abstract
In this paper, we investigate the general solution of the following functional equation
$$f(x+3y)+f(x-3y)=9(f(x+y)+f(x-y))+12f(y)-12f(2y)+4f(3y)-16f(x)$$
and discuss its Hyers-Ulam stability in quasi-Banach spaces.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] J. Aczél, The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases, Glasnik Mat.-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske, 20 (1965), 65–73. Google Scholar
[2] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge (1989). Google Scholar
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. Google Scholar
[4] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications 48, American Mathematical Society, Providence, RI (2000). Google Scholar
[5] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76–86. https://doi.org/10.1007/BF02192660 Google Scholar
[6] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59–64. Google Scholar
[7] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211 Google Scholar
[8] V. Govindan, J. Lee, S. Pinelas and P. Muniyappan, General solution and Ulam stability of generalized CQ functional equation, Korean J. Math., 30 (2022), no. 2, 403–412. http://dx.doi.org/10.11568/kjm.2022.30.2.403 Google Scholar
[9] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen, 48 (1996), no. 3–4, 217–235. https://doi.org/10.5486/PMD.1996.1559 Google Scholar
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. Google Scholar
[11] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel (1998). Google Scholar
[12] K. Jun and H. Kim, Ulam stability problem for a mixed type of cubic and additive functional equation, Bull. Belg. Math. Soc. Simon Stevin, 13 (2006), 271–285. Google Scholar
[13] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368–372. https://doi.org/10.1007/BF03322841 Google Scholar
[14] A. K. Mirmostafaee, Fuzzy stability of quartic mappings, Ital. J. Pure Appl. Math., 27 (2010), 99–106. Google Scholar
[15] A. K. Mirmostafaee, Stability of the monomial functional equation in quasi normed spaces, Bull. Korean Math. Soc., 47 (2010), no. 4, 777–785. https://doi.org/10.4134/BKMS.2010.47.4.777 Google Scholar
[16] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl., 340 (2008), no. 1, 569–574. https://doi.org/10.1016/j.jmaa.2007.08.048 Google Scholar
[17] A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), no. 1, 399–415. https://doi.org/10.1016/j.jmaa.2007.03.104 Google Scholar
[18] W. Park and J. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Anal., 62 (2005), no. 4, 643–654. https://doi.org/10.1016/j.na.2005.03.075 Google Scholar
[19] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, J. Indian Math. Soc. (N.S.), 67 (2000), no. 1–4, 169–178. Google Scholar
[20] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. Google Scholar
[21] K. Ravi and M. Arun Kumar, Hyers-Ulam-Rassias stability of a quartic functional equation, Int. J. Pure Appl. Math., 34 (2007), no. 2, 247–260. Google Scholar
[22] S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Warszawa; Reidel, Dordrecht (1984). Google Scholar
[23] F. Skof, Proprieta’ locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113–129. Google Scholar
[24] S. M. Ulam, Problems in Modern Mathematics, John Wiley and Sons, New York (1964). Google Scholar
[25] D. Zhang, J. M. Rassias and Y. Li, On the Hyers-Ulam solution and stability problem for set-valued Euler-Lagrange quadratic functional equations, Korean J. Math., 30 (2022), no. 4, 571–592. http://dx.doi.org/10.11568/kjm.2022.30.4.571 Google Scholar