Korean J. Math. Vol. 33 No. 3 (2025) pp.219-229
DOI: https://doi.org/10.11568/kjm.2025.33.3.219

Generalized Lukasiewicz fuzzy subalgebras of BCI-algebras and BCK-algebras

Main Article Content

Sun Shin Ahn
Young Joo Seo
Young Bae Jun

Abstract

The aim of this paper is to generalize Lukasiewicz fuzzy subalgebras in BCK/BCI-algebras. First, the concept of (α,ϵ)-Lukasiewicz fuzzy subalgebras using fuzzy points is defined and  examples to explain it are given, and then several properties are investigated. The relationship between Lukasiewicz fuzzy subalgebras and (α,ϵ)-Lukasiewicz fuzzy subalgebras is discussed, and  the conditions under which the ϵ-Lukasiewicz fuzzy set to be an (α,ϵ)-Lukasiewicz fuzzy subalgebra are explored. The characterizations of (α,ϵ)-Lukasiewicz fuzzy subalgebras are examined. Conditions under which Lukasiewicz ∈-set, Lukasiewicz q-set and Lukasiewicz O-set can be subalgebras are handled.


Article Details

References

[1] S. S. Ahn, E. H. Roh, Y. B. Jun, Ideals in BE-algebras based on Lukasiewicz fuzzy set, European Journal of Pure and Applied Mathematics, 15 (3) (2022), 1307–1320. https://doi.org/10.29020/nybg.ejpam.v15i3.4467 Google Scholar

[2] R. A. Borzooei, S. S. Ahn, Y. B. Jun, Lukasiewicz fuzzy filters of Sheffer stroke Hilbert algebras, Journal of Intelligent & Fuzzy Systems, 46 (2024), 8231–8243. https://doi.org/10.3233/JIFS-233295 Google Scholar

[3] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006. Google Scholar

[4] K. Iséki, On BCI-algebras, Mathematics Seminar Notes, 8 (1980), 125–130. https://api.semanticscholar.org/CorpusID:119048727 Google Scholar

[5] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, 23 (1978), 1–26. Google Scholar

[6] Y. B. Jun, Lukasiewicz fuzzy subalgebras in BCK-algebras and BCI-algebras, Annals of Fuzzy Mathematics and Informatics, 23 (2) (2022), 213–223. https://doi.org/10.30948/afmi.2022.23.2.213 Google Scholar

[7] Y. B. Jun, Lukasiewicz fuzzy ideals in BCK-algebras and BCI-algebras, Journal of Algebra and Related Topics, 11 (1) (2023), 1–14. Google Scholar

[8] Y. B. Jun, Positive implicative BE-filters of BE-algebras based on Lukasiewicz fuzzy sets, Journal of Algebraic Hyperstructures and Logical Algebras, 4 (1) (2023), 1–11. Google Scholar

[9] Y. B. Jun, S. S. Ahn, Lukasiewicz fuzzy BE-algebras and BE-filters, European Journal of Pure and Applied Mathematics, 15 (3) (2022), 924–937. https://doi.org/10.29020/nybg.ejpam.v15i3.4446 Google Scholar

[10] J. Meng, Y. B. Jun, BCK-algebras, Kyungmoonsa Co., Seoul, 1994. Google Scholar

[11] M. Mohseni Takallo, M. Aaly Kologani, Y. B. Jun, R. A. Borzooei, Lukasiewicz fuzzy filters in hoops, Journal of Algebraic Systems, 12 (1) (2024), 1–20. https://doi.org/10.22044/JAS.2022.12139.1632 Google Scholar

[12] P. M. Pu, Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore Smith convergence, Journal of Mathematical Analysis and Applications, 76 (1980), 571–599. https://doi.org/10.1016/0022-247X(80)90048-7 Google Scholar

[13] G. R. Rezaei, Y. B. Jun, Commutative ideals of BCI-algebras based on Lukasiewicz fuzzy sets, Journal of Algebraic Hyperstructures and Logical Algebras, 3 (4) (2022), 25–36. https://doi.org/10.52547/HATEF.JAHLA.3.4.2 Google Scholar

[14] S. Z. Song, Y. B. Jun, Lukasiewicz fuzzy positive implicative ideals in BCK-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 3 (2) (2022), 47–58. https://doi.org/10.52547/HATEF.JAHLA.3.2.4 Google Scholar