Korean J. Math. Vol. 33 No. 3 (2025) pp.231-245
DOI: https://doi.org/10.11568/kjm.2025.33.3.231

Hyers-Ulam stability of fuzzy Hilbert $C^{*}$-module homomorphisms and fuzzy Hilbert $C^{*}$-module derivations

Main Article Content

Sajjad Khan
Choonkil Park

Abstract

In the present paper, we introduce the notion of a fuzzy Hilbert $C^*$-module and study the Hyers-Ulam stability of fuzzy Hilbert $C^{*}$-module homomorphisms and fuzzy Hilbert $C^{*}$-module derivations in fuzzy Hilbert $C^*$-modules using the fixed point method.



Article Details

References

[1] L. Aiemsomboon, W. Sintunavarat, On generalized hyperstability of a general linear equation, Acta Math. Hungar. 149 (2016), no. 2, 413–422. https://doi.org/10.1007/s10474-016-0621-2 Google Scholar

[2] L. Aiemsomboon, W. Sintunavarat, Two new generalised hyperstability results of the Drygas functional equation, Bull. Aust. Math. Soc. 95 (2017), no. 2, 269–280. https://doi.org/10.1017/S000497271600126X Google Scholar

[3] L. Aiemsomboon, W. Sintunavarat, A note on the generalised hyperstability of the general linear equation, Bull. Aust. Math. Soc. 96 (2017), no. 2, 263–273. https://doi.org/10.1017/S0004972717000569 Google Scholar

[4] L. Aiemsomboon, W. Sintunavarat, On new approximations for generalized Cauchy functional equations using Brzdęk and Ciepliński’s fixed point theorems in 2-Banach spaces, Acta Math. Sci. 40 (2020), no. 3, 824–834. https://doi.org/10.1007/s10473-020-0316-1 Google Scholar

[5] R. Ameri, Fuzzy inner product and fuzzy norm of hyperspaces, Iran. J. Fuzzy Syst. 11 (3) (2014), 125–136. https://doi.org/10.22111/IJFS.2014.1574 Google Scholar

[6] A. A. Azzam, Spherical fuzzy and soft topology: Some applications, J. Math. Comput. Sci. 32 (2) (2024), 152–159. http://dx.doi.org/10.22436/jmcs.032.02.05 Google Scholar

[7] T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003), 687–706. Google Scholar

[8] E. Biçer, C. Tunç, On the Hyers-Ulam stability of second order noncanonical equations with deviating argument, TWMS J. Pure Appl. Math. 14 (2023), no. 2, 151–161. https://doi.org/10.30546/2219-1259.14.22023.151 Google Scholar

[9] L. Cadariu, V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4 (2003), no. 1, 7 pp. Google Scholar

[10] R. Chaharpashlou, M. Essmaili, and C. Park, Fuzzy Hilbert C⋆-modules, Korean J. Math. 33 (2025), no. 2, 131–141. https://doi.org/10.11568/kjm.2025.33.2.131 Google Scholar

[11] R. Chaharpashlou, D. O’Regan, C. Park, R. Saadati, C-Algebra valued fuzzy normed spaces with application of Hyers-Ulam stability of a random integral equation*, Adv. Difference Equ. 2020 (2020), Paper No. 326, 9 pp. Google Scholar

[12] S. Kh. Ekrami, Characterization of Hilbert C-module higher derivations*, Georgian Math. J. 31 (2024), no. 3, 397–403. https://doi.org/10.1515/gmj-2023-2085 Google Scholar

[13] A. M. El-Abyad, H. M. El-Hamouly, Fuzzy inner product spaces, Fuzzy Sets Syst. 44 (2) (1991), 309–326. https://doi.org/10.1016/0165-0114(91)90014-H Google Scholar

[14] P. Găvrută, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436. Google Scholar

[15] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 90 (3) (1997), 365–368. https://doi.org/10.1016/S0165-0114(96)00207-2 Google Scholar

[16] M. Goudarzi, S. M. Vaezpour, On the definition of fuzzy Hilbert spaces and its application, J. Nonlinear Sci. Appl. 2 (1) (2009), 46–59. http://dx.doi.org/10.22436/jnsa.002.01.07 Google Scholar

[17] A. E. Hamza, M. A. Alghamdi, S. A. Alasmi, Hyers-Ulam and Hyers-Ulam-Rassias stability of first-order linear quantum differential equations, J. Math. Comput. Sci. 35 (2024), no. 3, 336–347. https://dx.doi.org/10.22436/jmcs.035.03.06 Google Scholar

[18] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. Google Scholar

[19] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (4) (1953), 839–858. Google Scholar

[20] S. Khan, S. W. Min, C. Park, Permuting triderivations and permuting trihomomorphisms in complex Banach algebras, J. Anal. 32 (2024), no. 3, 1671–1690. https://doi.org/10.1007/s41478-023-00709-w Google Scholar

[21] S. Khan, C. Park, M. Donganont, The stability of bi-derivations and bihomomorphisms in Banach algebras, J. Math. Comput. Sci. 35 (2024), no. 4, 482–491. https://dx.doi.org/10.22436/jmcs.035.04.07 Google Scholar

[22] V. A. Khan, O. Kisi, R. Akbiyik, New types of convergence of double sequences in neutrosophic fuzzy G-metric spaces, J. Nonlinear Sci. Appl. 17 (4) (2024), 150–179. http://dx.doi.org/10.22436/jnsa.017.04.01 Google Scholar

[23] A. Kheawborisut, S. Paokanta, J. Senasukh, C. Park, Ulam stability of hom-der in fuzzy Banach algebras, AIMS Math. 7 (2022), no. 9, 16556–16568. https://doi.org/10.3934/math.2022907 Google Scholar

[24] S. G. Korma, P. R. Kishore, D. C. Kifetew, Fuzzy lattice ordered group based on fuzzy partial ordering relation, Korean J. Math. 32 (2) (2024), 195–211. https://doi.org/10.11568/kjm.2024.32.2.195 Google Scholar

[25] E. C. Lance, Hilbert C-Modules: A Tool for Operator Algebras*, Cambridge University Press, Cambridge, 1995. Google Scholar

[26] N. Malik, M. Shabir, T. M. Al-shami, R. Gul, M. Arar, A novel decision-making technique based on T-rough bipolar fuzzy sets, J. Math. Comput. Sci. 33 (3) (2024), 275–289. http://dx.doi.org/10.22436/jmcs.033.03.06 Google Scholar

[27] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), no. 1, 567–572. https://doi.org/10.1016/j.jmaa.2008.01.100 Google Scholar

[28] A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst. 159 (2008), no. 6, 720–729. https://doi.org/10.1016/j.fss.2007.09.016 Google Scholar

[29] A. Misir, E. Cengizhan, Y. Başi, Ulam type stability of ψ-Riemann-Liouville fractional differential equations using (k,ψ)-generalized Laplace transform, J. Nonlinear Sci. Appl. 17 (2024), no. 2, 100–114. https://dx.doi.org/10.22436/jnsa.017.02.03 Google Scholar

[30] G. J. Murphy, C-Algebras and Operator Theory*, Academic Press, Boston, MA, 1990. Google Scholar

[31] C. Park, Homomorphism between Poisson JC-algebras*, Bull. Braz. Math. Soc. 36 (2005), no. 1, 79–97. https://doi.org/10.1007/s00574-005-0029-z Google Scholar

[32] C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Sets Syst. 160 (2009), no. 11, 1632–1642. https://doi.org/10.1016/j.fss.2008.11.027 Google Scholar

[33] W. Park, M. Donganont, G. Kim, On the superstability of the p-power-radical sine functional equation related to Pexider type, J. Math. Comput. Sci. 34 (2024), no. 1, 52–64. https://dx.doi.org/10.22436/jmcs.034.01.05 Google Scholar

[34] L. Popa, S. Lavinis, Some remarks on fuzzy Hilbert spaces (preprint). https://doi.org/10.20944/preprints202102.0522.v1 Google Scholar

[35] N. H. M. Qumami, R. S. Jain, B. S. Reddy, On the existence for impulsive fuzzy nonlinear integro-differential equations with nonlocal conditions, J. Math. Comput. Sci. 32 (1) (2024), 13–24. http://dx.doi.org/10.22436/jmcs.032.01.02 Google Scholar

[36] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. Google Scholar

[37] R. Sadaati, C. Park, and J. Jagjeet, Fuzzy approximate of derivations, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77 (2015), no. 4, 33–44. Google Scholar

[38] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Appl. Math. Comput. 17 (1-2) (2005), 475–484. https://doi.org/10.1007/BF02936069 Google Scholar

[39] H. Saidi, A. R. Janfada, and M. Mirzawaziri, Kinds of derivations on Hilbert C∗-modules and their operator algebras, Miskolc Math. Notes 16 (2015), no. 1, 453–461. https://doi.org/10.18514/MMN.2015.1108 Google Scholar

[40] M. P. Sunil and J. S. Kumar, On beta product of hesitancy fuzzy graphs and intuitionistic hesitancy fuzzy graphs, Korean J. Math. 31 (4) (2023), 485–494. https://doi.org/10.11568/kjm.2023.31.4.485 Google Scholar

[41] S. M. Ulam, Problems in Modern Mathematics, John Wiley and Sons, New York, NY, USA (1964). Google Scholar

[42] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), no. 3, 338–353. Google Scholar