Korean J. Math. Vol. 33 No. 2 (2025) pp.95-106
DOI: https://doi.org/10.11568/kjm.2025.33.2.95-106

Dynamic mode decomposition based prediction method for diffusive Lotka-Volterra equation

Main Article Content

Donghyun Kim

Abstract

In this work, we propose a dynamic mode decomposition (DMD) based prediction method for diffusive Lotka-Volterra equations.
To accommodate the multi-species structure of the model, we concatenate the solutions of all species into a single snapshot. 
Once the DMD modes are extracted, we can separate the modes of each species easily.
While each species exhibits distinct mode shapes, they share identical eigenvalues, indicating that interspecies interactions are captured.
Snapshot data are first generated using a finite difference method, and long-term predictions are then obtained via the DMD reconstruction. From these predictions, we reconstruct the species dominance indicator function, which classifies the dominant species at each spatial location. Numerical experiments demonstrate that the DMD based predictions for dominance indicator function achieves high accuracy while effectively reducing computational cost.



Article Details

References

[1] P. J. Wangersky, Lotka-Volterra population models, Annu. Rev. Ecol. Syst. 9 (1978), 189–218. https://www.jstor.org/stable/2096748 Google Scholar

[2] B. Guy, Ecological communities with Lotka-Volterra dynamics, Phys. Rev. E 95 (4) (2017), 042414. https://doi.org/10.1103/PhysRevE.95.042414 Google Scholar

[3] J. He, Z. Zheng, Z. Ye, A new numerical approach method to solve the Lotka–Volterra predator–prey models with discrete delays, Physica A 635 (1) (2024), 129524. https://doi.org/10.1016/j.physa.2024.129524 Google Scholar

[4] S. Suweis, F. Ferraro, C. Grilletta, S. Azaele, A. Martian, Generalized Lotka–Volterra systems with time correlated stochastic interactions, Phys. Rev. Lett. 133 (16) (2024), 167101. https://doi.org/10.1103/PhysRevLett.133.167101 Google Scholar

[5] A. W. Wijeratne, F. Yi, J. Wei, Bifurcation analysis in the diffusive Lotka–Volterra system: An application to market economy, Chaos Solitons Fractals 40 (2) (2009), 902–911. https://doi.org/10.1016/j.chaos.2007.08.043 Google Scholar

[6] G. Zhang, D. A. McAdams, V. Shankar, M. M. Darani, Technology Evolution Prediction Using Lotka–Volterra Equations, J. Mech. Des. 140 (6) (2009), 061101. https://doi.org/10.1115/1.4039448 Google Scholar

[7] X. He, W. M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity I., Commun. Pure Appl. Math. 69 (5) (2015), 981–1014. https://doi.org/10.1002/cpa.21596 Google Scholar

[8] X. He, W. M. Ni, The effects of diffusion and spatial variation in Lotka–Volterra competition–diffusion system I: Heterogeneity vs. homogeneity, J. Differ. Equ. 254 (2) (2013), 528–546. https://doi.org/10.1016/j.jde.2012.08.032 Google Scholar

[9] M. Chen, Pattern dynamics of a Lotka-Volterra model with taxis mechanism, Appl. Math. Comput. 471 (1) (2025), 129017. https://doi.org/10.1016/j.amc.2024.129017 Google Scholar

[10] Z.-A. Wang, J. Xu, On the Lotka–Volterra competition system with dynamical resources and density-dependent diffusion, J. Math. Biol. 82 (7) (2021), 1–37. https://doi.org/10.1007/s00285-021-01562-w Google Scholar

[11] C. V. Pao, Y.-M. Wang, Numerical solutions of a three-competition Lotka–Volterra system, Appl. Math. Comput. 204 (1) (2008), 423–440. https://doi.org/10.1016/j.amc.2008.06.057 Google Scholar

[12] R. E. Mickens, A nonstandard finite-difference scheme for the Lotka–Volterra system, Appl. Numer. Math. 45 (2–3) (2003), 309–314. https://doi.org/10.1016/S0168-9274(02)00223-4 Google Scholar

[13] F. Vadillo, Comparing stochastic Lotka–Volterra predator-prey models, Appl. Math. Comput. 360 (1) (2019), 181–189. https://doi.org/10.1016/j.amc.2019.05.002 Google Scholar

[14] A. Cangiani, E. H. Georgoulis, A. Yu. Morozov, O. J. Sutton, Revealing new dynamical patterns in a reaction–diffusion model with cyclic competition via a novel computational framework, Proc. R. Soc. A 474 (2018), 20170608. https://doi.org/10.1098/rspa.2017.0608 Google Scholar

[15] B. Andreianov, M. Bendahmane, R. Ruiz-Baier, Analysis of a finite volume method for a cross-diffusion model in population dynamics, Math. Models Methods Appl. Sci. 21 (2) (2011), 307–344. https://doi.org/10.1142/S0218202511005064 Google Scholar

[16] P. J. Schmid, Dynamic Mode Decomposition and Its Variants, Annu. Rev. Fluid Mech. 54 (1) (2022), 225–254. https://doi.org/10.1146/annurev-fluid-030121-015835 Google Scholar

[17] J. L. Proctor, S. L. Brunton, J. N. Kutz, Dynamic mode decomposition with control, SIAM J. Appl. Dyn. Syst. 15 (1) (2015), 142–161. https://doi.org/10.1137/15M1013857 Google Scholar

[18] P. J. Schmid, L. Li, M. P. Juniper, O. Pustz, Applications of the dynamic mode decomposition, Theor. Comput. Fluid Dyn. 25 (1) (2011), 249–259. https://doi.org/10.1007/s00162-010-0203-9 Google Scholar

[19] J. C. Butcher, A history of Runge-Kutta methods, Appl. Numer. Math. 20 (3) (1996), 247–260. https://doi.org/10.1016/0168-9274(95)00108-5 Google Scholar

[20] J. L. Proctor, P. A. Eckhoff, Discovering dynamic patterns from infectious disease data using dynamic mode decomposition, Int. Health 7 (2) (2015), 139–145. https://doi.org/10.1093/inthealth/ihv009 Google Scholar

[21] Y. Shiraishi, Y. Kwahara, O. Yamashita, R. Fukuma, S. Yamamoto, Y. Saitoh, H. Kishima, T. Yanagisawa, Neural decoding of electrocorticographic signals using dynamic mode decomposition, J. Neural Eng. 17 (3) (2020), 036009. https://doi.org/10.1088/1741-2552/ab8910 Google Scholar

[22] R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, 2004. https://doi.org/10.1002/0470871296 Google Scholar

[23] H. Lu, D. M. Tartakovsky, Prediction accuracy of dynamic mode decomposition, SIAM J. Sci. Comput. 42 (3) (2020), A1639–A1662. https://doi.org/10.1137/19M1259948 Google Scholar