Korean J. Math. Vol. 33 No. 3 (2025) pp.261-271
DOI: https://doi.org/10.11568/kjm.2025.33.3.261

On the weak global dimension of a subclass of Pr\"ufer non-coherent rings

Main Article Content

Younes El Haddaoui
Hwankoo Kim
Najib Mahdou

Abstract

It is known that if $R$ is a coherent Pr\"ufer ring, which is necessarily a Gaussian ring, then its weak global dimension w.gl.dim($R$) must be $0$, $1$, or $\infty$.
In this paper, we investigate the possible values of the weak global dimension for a broader class of Pr\"ufer rings that are not necessarily coherent. Our analysis employs four conceptually distinct proofs, each relying on different homological techniques, including localization at the nilradical, finitistic projective dimension, and flatness properties. The results extend the classical framework to a non-coherent setting by incorporating the effective $\mathcal{H}^D$ framework, which serves as a surrogate for coherence in controlling homological dimensions. This work aims to deepen the understanding of the weak global dimension in the context of non-coherent Pr\"ufer rings and provide a unified perspective on its behavior.



Article Details

References

[1] K. Alkhazami, F. A. A. Almahdi, Y. El Haddaoui, N. Mahdou, On strongly-nonnil coherent rings and strongly nonnil-Noetherian rings, Bull. Iran. Math. Soc. 50 (2024), article number 21. https://doi.org/10.1007/s41980-023-00856-7 Google Scholar

[2] D. F. Anderson, A. Badawi, On ϕ-Prüfer rings and ϕ-Bézout rings, Houston J. Math. 30(2) (2004), 331–343. Google Scholar

[3] D. F. Anderson, A. Badawi, On ϕ-Dedekind rings and ϕ-Krull rings, Houston J. Math. 31(4) (2005), 1007–1022. Google Scholar

[4] K. Bacem, A. Benhissi, Nonnil-coherent rings, Beitr. Algebra Geom. 57(2) (2016), 297–305. https://doi.org/10.1007/s13366-015-0260-8 Google Scholar

[5] A. Badawi, T. G. Lucas, Rings with prime nilradical, In: S. T. Chapman (ed.), Arithmetical Properties of Commutative Rings and Monoids, Lect. Notes Pure Appl. Math. 241, Chapman & Hall/CRC, Boca Raton, FL (2005), 198–212. https://doi.org/10.1201/9781420028249 Google Scholar

[6] C. Bakkari, S. Kabbaj, N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra 214(1) (2010), 53–60. https://doi.org/10.1016/j.jpaa.2009.04.011 Google Scholar

[7] S. Bazzoni, S. Glaz, Prüfer rings, In: J. W. Brewer et al. (eds.), Multiplicative Ideal Theory in Commutative Algebra, Springer, New York (2006), 263–277. https://doi.org/10.1007/978-0-387-36717-0_4 Google Scholar

[8] D. L. Costa, Parameterizing families of non-Noetherian rings, Commun. Algebra 22(10) (1994), 3997–4011. https://doi.org/10.1080/00927879408825061 Google Scholar

[9] Y. El Haddaoui, H. Kim, N. Mahdou, On nonnil-coherent modules and nonnil-Noetherian modules, Open Math. 20(1) (2022), 1521–1537. https://doi.org/10.1515/math-2022-0526 Google Scholar

[10] Y. El Haddaoui, N. Mahdou, On ϕ-(weak) global dimension, J. Algebra Appl., to appear (2023). https://doi.org/10.1142/S021949882450169X Google Scholar

[11] D. J. Fieldhouse, Pure theories, Math. Ann. 184(1) (1969), 1–18. https://doi.org/10.1007/BF01350610 Google Scholar

[12] D. J. Fieldhouse, Regular rings and modules, J. Aust. Math. Soc. 13(4) (1972), 477–491. https://doi.org/10.1017/S144678870000923X Google Scholar

[13] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math. 1371, Springer-Verlag, Berlin (1989). Google Scholar

[14] S. Glaz, R. Schwarz, Prüfer conditions in commutative rings, Arab J. Sci. Eng. 36(6) (2011), 967–983. https://doi.org/10.1007/s13369-011-0049-5 Google Scholar

[15] J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Appl. Math. 117, Dekker, New York (1988). Google Scholar

[16] C. U. Jensen, A remark on arithmetical rings, Proc. Amer. Math. Soc. 15(6) (1964), 951–954. Google Scholar

[17] S. Kabbaj, Matlis’ semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroccan J. Algebra Geom. Appl. 1(1) (2022), 1–17. Google Scholar

[18] D. G. Northcott, A First Course in Homological Algebra, Cambridge University Press, Cambridge (1973). Google Scholar

[19] W. Qi, X. Zhang, Some remarks on nonnil-coherent rings and ϕ-IF rings, J. Algebra Appl. 21(11) (2022), 225–211. https://doi.org/10.1142/S0219498822502115 Google Scholar

[20] W. Qi, X. Zhang, Some remarks on ϕ-Dedekind rings and ϕ-Prüfer rings, Filomat 39(3) (2025), 809–818. https://doi.org/10.2298/FIL2503809Q Google Scholar

[21] R. C. Shock, Certain Artinian rings are Noetherian, Can. J. Math. 24(4) (1972), 553–556. https://doi.org/10.4153/CJM-1972-048-4 Google Scholar

[22] G. H. Tang, F. G. Wang, W. Zhao, On ϕ-von Neumann regular rings, J. Korean Math. Soc. 50(1) (2013), 219–229. https://doi.org/10.4134/JKMS.2013.50.1.219 Google Scholar

[23] F. G. Wang, H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications 22, Springer, Singapore (2016). https://doi.org/10.1007/978-981-97-5284-3 Google Scholar

[24] X. Zhang, S. Xing, W. Qi, Strongly ϕ-flat modules, strongly nonnil-injective modules and their homological dimensions, Rocky Mountain J. Math., to appear. Google Scholar

[25] W. Zhao, On ϕ-flat modules and ϕ-Prüfer rings, J. Korean Math. Soc. 55(5) (2018), 1221–1233. https://doi.org/10.4134/JKMS.j170667 Google Scholar