Korean J. Math. Vol. 33 No. 4 (2025) pp.355-362
DOI: https://doi.org/10.11568/kjm.2025.33.4.355

On zero-dimensional spaces of closed subsets

Main Article Content

Namjip Koo
Hyunhee Lee

Abstract

In this paper, we study some basic properties related to separation axioms of the space of closed subsets of a zero-dimensional topological space.
Thus we characterize the hyperspace of a zero-dimensional topological space via the notions of normality and partition. Then we establish five equivalent conditions characterizing when the hyperspace of a compact Hausdorff space is zero-dimensional. Furthermore, we give some examples related to our results.



Article Details

References

[1] N. Bourbaki, Éléments de mathématique. Topologie générale, Chapitres 5 à 10, Hermann, Paris (1974). Google Scholar

[2] E. Čech, Contribution à la théorie de la dimension, Čas. Mat. Fys., 62 (1933), 277–290. Google Scholar

[3] M. Coornaert, Topological Dimension and Dynamical Systems, Springer (2015). https://link.springer.com/book/10.1007/978-3-319-19794-4 Google Scholar

[4] F. Hausdorff, Grundzüge der Mengenlehre, Veit, Leipzig (1914). Google Scholar

[5] A. Illanes and Sam B. Nadler Jr., Hyperspaces, Marcel Dekker Inc., New York and Basel (1999). Google Scholar

[6] H. Lebesgue, Sur la non-applicabilité de deux domaines appartenant respectivement à des espaces à n et n+p dimensions, Math. Ann., 70 (1911), 166–168. https://doi.org/10.1007/BF01461155 Google Scholar

[7] H. Lebesgue, Sur les correspondances entre les points de deux espaces, Fund. Math., 2 (1921), 256–285. https://eudml.org/doc/212977 Google Scholar

[8] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (2) (1951), 152–182. https://doi.org/10.1090/S0002-9947-1951-0042109-4 Google Scholar

[9] W. Sierpiński, Sur les ensembles connexes et non connexes, Fund. Math., 2 (1921), 81–95. Google Scholar