On zero-dimensional spaces of closed subsets
Main Article Content
Abstract
In this paper, we study some basic properties related to separation axioms of the space of closed subsets of a zero-dimensional topological space.
Thus we characterize the hyperspace of a zero-dimensional topological space via the notions of normality and partition. Then we establish five equivalent conditions characterizing when the hyperspace of a compact Hausdorff space is zero-dimensional. Furthermore, we give some examples related to our results.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.
References
[1] N. Bourbaki, Éléments de mathématique. Topologie générale, Chapitres 5 à 10, Hermann, Paris (1974). Google Scholar
[2] E. Čech, Contribution à la théorie de la dimension, Čas. Mat. Fys., 62 (1933), 277–290. Google Scholar
[3] M. Coornaert, Topological Dimension and Dynamical Systems, Springer (2015). https://link.springer.com/book/10.1007/978-3-319-19794-4 Google Scholar
[4] F. Hausdorff, Grundzüge der Mengenlehre, Veit, Leipzig (1914). Google Scholar
[5] A. Illanes and Sam B. Nadler Jr., Hyperspaces, Marcel Dekker Inc., New York and Basel (1999). Google Scholar
[6] H. Lebesgue, Sur la non-applicabilité de deux domaines appartenant respectivement à des espaces à n et n+p dimensions, Math. Ann., 70 (1911), 166–168. https://doi.org/10.1007/BF01461155 Google Scholar
[7] H. Lebesgue, Sur les correspondances entre les points de deux espaces, Fund. Math., 2 (1921), 256–285. https://eudml.org/doc/212977 Google Scholar
[8] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (2) (1951), 152–182. https://doi.org/10.1090/S0002-9947-1951-0042109-4 Google Scholar
[9] W. Sierpiński, Sur les ensembles connexes et non connexes, Fund. Math., 2 (1921), 81–95. Google Scholar