Korean J. Math. Vol. 33 No. 3 (2025) pp.285-300
DOI: https://doi.org/10.11568/kjm.2025.33.3.285

A Hopf bifurcation of multidimensional attraction-repulsion chemotaxis system with nonlinear sensitive functions

Main Article Content

YoonMee Ham

Abstract

This paper is concerned with a multi-dimensional attraction-repulsion chemotaxis system with nonlinear sensitive functions. A corresponding free boundary problem is derived, and proved the existence of stationary solutions and Hopf bifurcation which are essentially determined by the competition of attraction and repulsion.



Article Details

References

[1] J. Adler, Chemotaxis in bacteria, Science 153 (1966), 708–716. https://doi.org/10.1126/science.153.3737.708 Google Scholar

[2] M. G. Crandall, P. H. Rabinowitz, The Hopf Bifurcation Theorem in Infinite Dimensions, Arch. Rat. Mech. Anal. 67 (1977), 53–72. https://doi.org/10.1007/BF00280827 Google Scholar

[3] P. Fife, Dynamics of internal layers and diffusive interfaces, CMBS-NSF Regional Conference Series in Applied Mathematics, 53, Philadelphia: SIAM, 1988. https://doi.org/10.1137/1.9781611970180 Google Scholar

[4] Y. M. Ham-Lee, R. Schaaf, R. Thompson, A Hopf bifurcation in a parabolic free boundary problem, J. Comput. Appl. Math. 52 (1994), 305–324. https://doi.org/10.1016/0377-0427(94)90363-8 Google Scholar

[5] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics No. 840, Springer-Verlag, New York Heidelberg Berlin, 1981. https://link.springer.com/book/10.1007/BFb0089647 Google Scholar

[6] K. Ikeda, M. Mimura, Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion, Commun. Pur. Appl. Anal. 11 (2012), 275–305. https://doi.org/10.3934/cpaa.2012.11.275 Google Scholar

[7] H. Y. Jin, J. Li, Z. A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations 55 (2013), 193–219. https://doi.org/10.1016/j.jde.2013.04.002 Google Scholar

[8] S. Kawaguchi, Chemotaxis-growth under the influence of lateral inhibition in a three-component reaction-diffusion system, Nonlinearity 24 (2011), 1011–1031. https://doi.org/10.1088/0951-7715/24/4/002 Google Scholar

[9] S. Kawaguchi, M. Mimura, Synergistic effect of two inhibitors on one activator in a reaction diffusion system, Phys. Rev. E 77 (2008), 046201–046217. https://doi.org/10.1103/PhysRevE.77.046201 Google Scholar

[10] H. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations 260 (2016), 162–196. https://doi.org/10.1016/j.jde.2015.08.040 Google Scholar

[11] J. Liu, Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis model in one dimension, J. Biol. Dyn. 6 (2012), 31–41. https://doi.org/10.1080/17513758.2011.571722 Google Scholar

[12] M. Mimura, T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A 230 (1996), 499–543. https://doi.org/10.1016/0378-4371(96)00051-9 Google Scholar

[13] M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner, Chemotactic signalling, microglia, and Alzheimer’s disease senile plaque: is there a connection?, Bull. Math. Biol. 65 (2003), 215–225. https://doi.org/10.1016/S0092-8240(03)00030-2 Google Scholar

[14] T. Ohta, M. Mimura, R. Kobayashi, Higher dimensional localized patterns in excitable media, Phys. D 34 (1989), 115–144. https://doi.org/10.1016/0167-2789(89)90230-3 Google Scholar

[15] K. J. Painter, P. K. Maini, H. G. Othmer, Development and applications of a model for cellular response to multiple chemotactic cues, J. Math. Biol. 41 (2000), 285–314. https://doi.org/10.1007/s002850000035 Google Scholar

[16] Y. Tao, M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete & Continuous Dynamical Systems-B 20 (2015), 3165–3183. https://doi.org/10.3934/dcdsb.2015.20.3165 Google Scholar

[17] Y. S. Tao, Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci. 23 (2013), 1–36. https://doi.org/10.1142/S0218202512500443 Google Scholar

[18] T. Tsujikawa, Singular limit analysis of planar equilibrium solutions to a chemotaxis model equation with growth, Methods Appl. Anal. 3 (1996), 401–431. https://dx.doi.org/10.4310/MAA.1996.v3.n4.a1 Google Scholar

[19] Y. Zhu, F. Cong, Global existence to an attraction-repulsion chemotaxis model with fast diffusion and nonlinear source, Discrete Dyn. Nature Soc., 2015, Article ID 143718, 8 pages. https://doi.org/10.1155/2015/143718 Google Scholar