# On coefficients of nilpotent polynomials in skew polynomial rings

## Main Article Content

## Abstract

## Article Details

## References

[1] D.D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Al- gebra 26 (1998), 2265–2272. Google Scholar

[2] D.D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), 2847–2852. Google Scholar

[3] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473. Google Scholar

[4] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168, (2002), 45–52. Google Scholar

[5] C.Y. Hong, N.K. Kim, T.K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), 103–122. Google Scholar

[6] C.Y. Hong, N.K. Kim, T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra 151 (2000), 215–226. Google Scholar

[7] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751–761. Google Scholar

[8] Y.C. Jeon, Y. Lee, S.J. Ryu, A structure on coefficients of nilpotent polynomials, J. Korean Math. Soc. 47 (2010), 719–733. Google Scholar

[9] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477–488. Google Scholar

[10] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), 289–300. Google Scholar

[11] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. Google Scholar

[12] T.-K. Lee, T.-L. Wong, On Armendariz rings, Houston J. Math. 2 (2003), 583–593. Google Scholar

[13] M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14–17. Google Scholar