Korean J. Math. Vol. 21 No. 4 (2013) pp.439-454
DOI: https://doi.org/10.11568/kjm.2013.21.4.439

On the Birkhoff integral of fuzzy mappings in Banach spaces

Main Article Content

Chun-Kee Park

Abstract

In this paper, we intriduce the Birkhoff integral of fuzzy mappings in Banach spaces and investigate some properties of the integral.


Article Details

References

[1] M. Balcerzak and M. Potyrala, Convergence theorems for the Birkhott integral, Czech. Math. J. 58(2008), 1207-1219. Google Scholar

[2] B. Cascales and J. Rodriguez, Birkhoff integral for the multi-valued functions, J. Math. Anal. Appl. 297(2004), 540-560. Google Scholar

[3] X. Xue, Ha and M. Ma, Random fuzzy number integrals in Banach spaces, Fuzzy Sets and Systems 66(1994), 97-111. Google Scholar

[4] M. Balcerzak and M. Potyrala, Convergence theorems for the Birkhott integral, Czech. Math. J. 58(2008), 1207-1219. Google Scholar

[5] M. Balcerzak and M. Potyrala, Convergence theorems for the Birkhott integral, Czech. Math. J. 58(2008), 1207-1219. Google Scholar

[6] M. Balcerzak and M. Potyrala, Convergence theorems for the Birkhott integral, Czech. Math. J. 58(2008), 1207-1219. Google Scholar

[7] M. Balcerzak and M. Potyrala, Convergence theorems for the Birkhott integral, Czech. Math. J. 58(2008), 1207-1219. Google Scholar