Characterizations of graded Prufer $\star$-multiplication domains
Main Article Content
Abstract
Let $R=\bigoplus_{\alpha\in\Gamma}R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid $\Gamma$, and $\star$ be a semistar operation on $R$. In this paper we define and study the graded integral domain analogue of $\star$-Nagata and Kronecker function rings of $R$ with respect to $\star$. We say that $R$ is a graded Prufer $\star$-multiplication domain if each nonzero finitely generated homogeneous ideal of $R$ is $\star_f$-invertible. Using $\star$-Nagata and Kronecker function rings, we give several different equivalent conditions for $R$ to be a graded Prufer $\star$-multiplication domain. In particular we give new characterizations for a graded integral domain, to be a P$v$MD.
Article Details
Supporting Agencies
References
[1] D. D. Anderson, Some remarks on the ring R(X), Comment. Math. Univ. St. Pauli 26 (1977), 137–140. Google Scholar
[2] D. D. Anderson and D. F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549–569. Google Scholar
[3] D. D. Anderson and D. F. Anderson, Divisibility properties of graded domains, Canad. J. Math. 34 (1982), 196–215. Google Scholar
[4] D. F. Anderson and G. W. Chang, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169–184. Google Scholar
[5] D. D. Anderson and J.S. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), 2461–2475. Google Scholar
[6] D.F. Anderson, M. Fontana, and M. Zafrullah, Some remarks on Pru ̈fer ⋆- multiplication domains and class groups, J. Algebra 319 (2008), 272–295. Google Scholar
[7] J. T. Arnold and J. W. Brewer, Kronecker function rings and flat D[X]-modules, Proc. Amer. Math. Soc. 27 (1971), 483–485. Google Scholar
[8] G. W. Chang, Pru ̈fer ∗-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), 309–319. Google Scholar
[9] G.W. Chang and M. Fontana, Uppers to zero and semistar operations in poly- nomial rings, J. Algebra 318 (2007), 484–493. Google Scholar
[10] G. W. Chang, B. G. Kang and J. W. Lim, Pru ̈fer v-multiplication domains and related domains of the form D + DS [Γ∗ ] , J. Algebra 323 (2010), 3124–3133. Google Scholar
[11] C. C. Chevalley, La notion d'anneau de d ecomposition, Nagoya Math. J. 7 (1954), 21-33. Google Scholar
[12] E. Davis, Overrings of commutative rings, II, Trans. Amer. Math. Soc. 110 (1964), 196–212. Google Scholar
[13] D. E. Dobbs, E. G. Houston, T. G. Lucas and M. Zafrullah, t-linked overrings and Pru ̈fer v-multiplication domains, Comm. Algebra 17 (1989), 2835–2852. Google Scholar
[14] D. E. Dobbs and P. Sahandi, On semistar Nagata rings, Pru ̈fer-like domains and semistar going-down domains, Houston J. Math. 37 (3) (2011), 715–731. Google Scholar
[15] S. El Baghdadi and M. Fontana, Semistar linkedness and flatness, Pru ̈fer semis- tar multiplication domains, Comm. Algebra 32 (2004), 1101–1126. Google Scholar
[16] M. Fontana and J. A. Huckaba, Localizing systems and semistar operations, in: S. Chapman and S. Glaz (Eds.), Non Noetherian Commutative Ring Theory, Kluwer, Dordrecht, 2000, 169–197. Google Scholar
[17] M. Fontana, P. Jara and E. Santos, Pru ̈fer ⋆-multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), 21–50. Google Scholar
[18] M. Fontana and K. A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775–4801. Google Scholar
[19] M. Fontana and K. A. Loper, A Krull-type theorem for semistar integral closure of an integral domain, ASJE Theme Issue “Commutative Algebra" 26 (2001), 89–95. Google Scholar
[20] M. Fontana and K. A. Loper, Kronecker function rings: a general approach, in: D. D. Anderson and I. J. Papick (Eds.), Ideal Theoretic Methods in Commuta- tive Algebra, Lecture Notes Pure Appl. Math. 220 (2001), Dekker, New York, 189–205. Google Scholar
[21] M. Fontana and K. A. Loper, A historical overview of Kronecker function rings, Nagata rings, and related starand semistar operations, in: J. W. Brewer, S. Glaz, W. J. Heinzer, B. M. Olberding(Eds.), Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer, Springer, 2006, 169–187. Google Scholar
[22] M. Fontana and G. Picozza, Semistar invertibility on integral domains, Algebra Colloq. 12 (4) (2005), 645–664. Google Scholar
[23] R. Gilmer, Multiplicative Ideal Theory, New York, Dekker, 1972. Google Scholar
[24] E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955–1969. Google Scholar
[25] P. Jaffard, Les Syst`emes d'Id eaux, Dunod, Paris, 1960. Google Scholar
[26] B. G. Kang, Pru ̈fer v-multiplication domains and the ring R[X]Nv , J. Algebra 123 (1989), 151–170. Google Scholar
[27] I. Kaplansky, Commutative Rings, revised ed., Univ. Chicago Press, Chicago, 1974. Google Scholar
[28] M. Nagata, Local Rings, Wiley-Interscience, New York, 1962. Google Scholar
[29] D. G. Northcott, Lessons on ringss, modules, and multiplicities, Cambridge Univ. Press, Cambridge, 1968. Google Scholar
[30] A. Okabe and R. Matsuda, Semistar-operations on integral domains, Math. J. Toyama Univ. 17 (1994), 1–21. Google Scholar
[31] M. H. Park, Integral closure of a graded integral domain, Comm. Algebra, 35 (2007), 3965–3978. Google Scholar
[32] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794–799. Google Scholar