The properties of join and meet preserving maps
Main Article Content
Abstract
complete residuated lattices. In particular, we give their examples.
Article Details
Supporting Agencies
References
[1] R. BVelohl avek, Fuzzy Galois connections, Math. Log. Quart., 45 (1999), 497- 504. Google Scholar
[2] R. BVelohl avek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, (2002), doi: 10.1007/978-1-4615-0633-1. Google Scholar
[3] J.G. Garcia, I.M. Perez, M.A. Vicente, D. Zhang, Fuzzy Galois connections categorically, Math. Log. Quart., 56 (2) (2010), 131–147. Google Scholar
[4] P. H ajek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dor- drecht (1998), doi: 10.1007/978-94-011-5300-3. Google Scholar
[5] Y.C. Kim, Alexandrov L-topologies and L-join meet approximation operators International Journal of Pure and Applied Mathematics, 91 (1) (2014), 113-129 doi: 10.12732/ijpam.v9lili.12. Google Scholar
[6] H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems, 157 (2006), 1865-1885, doi: 10.1016/j.fss.2006.02.013. Google Scholar
[7] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analy- sis vs. rough set theory, Int. J. Approx. Reasoning, 50 (2009), 695-707, doi: 10.1016/j.ijar.2008.12.002. Google Scholar
[8] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341-356, , doi: 10.1007/BF01001956. Google Scholar
[9] Z. Pawlak, Rough probability, Bull. Pol. Acad. Sci. Math., 32 (1984), 607-615. Google Scholar
[10] Y.H. She, G.J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications, 58 (2009), 189-201, doi: 10.1016/j.camwa.2009.03.100. Google Scholar
[11] W. Yao, L.X. Lu, Fuzzy Galois connections on fuzzy posets, Math. Log. Quart., 55(1) (2009), 105–112. Google Scholar
[12] Q. Y. Zhang, L. Fan, Continuity in quantitive domains, Fuzzy Sets and Systems, 154 (2005), 118-131, doi: 10.1016/j.fss.2005.01.007. Google Scholar
[13] Q. Y. Zhang, W. X. Xie, Fuzzy complete lattices, Fuzzy Sets and Systems, 160(2009), 2275-2291, doi: 10.1016/j.fss.2008.12.001. Google Scholar
[14] Zhen Ming Ma, Bao Qing Hu, Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets, Information Sciences, 218(2013), 194- 204, doi: 10.1016/j.ins.2012.06.029. Google Scholar