A classification of links of the flat plumbing basket numbers $4$ or less
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] Y. Choi, Y. Do and D. Kim, A new classification of links by the flat plumbing basket numbers, preprint. Google Scholar
[2] R. Furihata, M. Hirasawa and T. Kobayashi, Seifert surfaces in open books, and a new coding algorithm for links, Bull. London Math. Soc. 40(3) (2008), 405–414. Google Scholar
[3] D. Gabai, Genera of the arborescent links, Mem. Amer. Math. Soc. 59 (339) (1986) I.VIII, 1–98. Google Scholar
[4] S. Hirose and Y. Nakashima, Seifert surfaces in open books, and pass moves on links, arXiv:1311.3383. Google Scholar
[5] D. Kim, Basket, flat plumbing and flat plumbing basket surfaces derived from induced graphs, preprint, arXiv:1108.1455. Google Scholar
[6] D. Kim, Y. S. Kwon and J. Lee, Banded surfaces, banded links, band indices and genera of links, J. Knot Theory Ramifications, arXiv:1105.0059. Google Scholar
[7] L. Rudolph, Hopf plumbing, arborescent Seifert surfaces, baskets, espaliers, and homogeneous braids, Topology Appl. 116 (2001), 255–277. Google Scholar
[8] H. Seifert, Uber das Geschlecht von Knoten, Math. Ann. 110 (1934), 571–592. Google Scholar
[9] J. Stallings, Constructions of fibred knots and links, in: Algebraic and Geometric Topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 2, Amer. Math. Soc., Providence, RI, 1978, pp. 55–60. Google Scholar
[10] T. Van Zandt. PSTricks: PostScript macros for generic TEX. Available at ftp://ftp. princeton.edu/pub/tvz/. Google Scholar