Reversibility over prime radicals
Main Article Content
Abstract
The studies of reversible and
Article Details
References
[1] D.D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27(1999), 2847-2852. Google Scholar
[2] D.D. Anderson and Camillo, Victor, Armendariz rings and gaussian rings, Comm. Algebra 26 (1998), 2265–2272. Google Scholar
[3] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), 3128-3140. Google Scholar
[4] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473. Google Scholar
[5] H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. Google Scholar
[6] G.F. Birkenmeier, H.E. Heatherly, E.K. Lee, Completely prime ideals and asso- ciated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong (1993), 102-129. Google Scholar
[7] W. Chen, On nil-semicommutative rings, Thai J. M. 9 (2011), 39-47. Google Scholar
[8] P.M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), 641-648. Google Scholar
[9] N.J. Divinsky, Rings and Radicals, University of Toronto Press, Toronto, 1965. Google Scholar
[10] Y. Hirano, D.V. Huynh, J.K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. 66 Google Scholar
[11] (1996), 360-365. Google Scholar
[12] C. Huh, H. K. Kim and Y. Lee, P. P.-rings and generalized P. P.-rings, J. Pure Appl. Algebra, 167 (2002), 37-52. Google Scholar
[13] S.U. Hwang, Y.C. Jeon, Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), 186-199. Google Scholar
[14] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477–488. Google Scholar
[15] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991. Google Scholar
[16] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. Google Scholar
[17] L.Liang, L.M. Wang, Z.K. Liu, On a generalization of semicommutative rings, Taiwanese J, Math. 11 (2007) 1359-1368 Google Scholar
[18] G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), 2113-2123. Google Scholar
[19] L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73. Google Scholar
[20] M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17. Google Scholar
[21] L.H. Rowen, Ring Theory, Academic Press, Inc., San Diego, 1991. Google Scholar
[22] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. Google Scholar