An additive functional inequality
Main Article Content
Abstract
In this paper, we solve the additive functional inequality
$$
\|f(x)+f(y)+f(z)\| \le \left\| \rho f\left( s (x+y+z)\right)\right\| , $$
where $s$ is a nonzero real number and $\rho$ is a real number with $|\rho| < 3$.
Moreover, we prove the Hyers-Ulam stability of the above additive functional inequality in Banach spaces.
Article Details
Supporting Agencies
References
[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66. Google Scholar
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86. Google Scholar
[3] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149–161. Google Scholar
[4] P. Gˇavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi- mately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436. Google Scholar
[5] A. Gil anyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequa- tiones Math. 62 (2001), 303-309. Google Scholar
[6] A. Gil anyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707- 710. Google Scholar
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. Google Scholar
[8] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan- von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages. Google Scholar
[9] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. Google Scholar
[10] J. R ̈atz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191–200. Google Scholar
[11] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. Google Scholar
[12] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960. Google Scholar