Hierarchical error estimators for lowest-order mixed finite element methods
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] M. Ainsworth, A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements, SIAM J. Sci. Comput. 30 (2007), 189–204. Google Scholar
[2] A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), 385– 395. Google Scholar
[3] D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications. Springer Series in Computational Mathematics, 44, Springer, Heidelberg, 2013. [4] D. Braess and R. Verfu ̈rth, A posteriori error estimators for the Raviart–Thomas element, SIAM J. Numer. Anal. 33 (1996), 2431–2444. Google Scholar
[4] J. H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math. 68 (1994), 311–324. Google Scholar
[5] C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), 465–476. Google Scholar
[6] K.-Y. Kim, A posteriori error analysis for locally conservative mixed methods, Math. Comp. 76 (2007), 43–66. Google Scholar
[7] K.-Y. Kim, Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems, Appl. Math. Comp. 218 (2012), 11820–11831. Google Scholar
[8] K.-Y. Kim, Asymptotically exact error estimator based on equilibrated fluxes, Int. J. Numer. Anal. Model. (2014), submitted. Google Scholar
[9] M. G. Larson and A. Ma ̇lqvist, A posteriori error estimates for mixed finite element approximations of elliptic problems, Numer. Math. 108 (2008), 487–500. Google Scholar
[10] C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp. 75 (2006), 1659–1674. Google Scholar
[11] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Proc. Conf. on Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., Vol. 606, Springer–Verlag, Berlin, 1977, 292–315. Google Scholar
[12] M. Vohral ik, A posteriori error estimates for lowest-order mixed finite element Google Scholar
[13] discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal. Google Scholar
[14] (2007), 1570–1599. Google Scholar
[15] M. Vohral ik, , Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, Math. Comp. 79 (2010), 2001-2032. Google Scholar
[16] M. F. Wheeler and I. Yotov, A multipoint flux mixed finite element method, SIAM J. Numer. Anal. 44 (2006), 2082–2106. Google Scholar
[17] B. I. Wohlmuth and R. H. W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart–Thomas elements, Math. Comp. 68 (1999), 1347–1378. Google Scholar