Financial models induced from auxiliary indices and twitter data
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] J. Bollen, H. Mao and X. Zeng, Twitter mood predicts the stock market, http://arxiv.org/abs /1010.3003 Google Scholar
[2] R. Chen and M. Lazer, Sentiment analysis of twitter feeds for the prediction of stock market movement, CS 229:Machine Learning, 2011, cs229.stanford.deu Google Scholar
[3] C. Castillo, M. Mendoza and B. Poblete, Information credibility on twitter, Proceedings of World Wide Web Conference (2011), 675–684. Google Scholar
[4] E. F. Fama, Efficient capital market: A review of theory and empirical work, J. Finance 25 (2) (1970), 383–417. Google Scholar
[5] M. Jeanblanc, V. Lacoste and S. Roland, Portfolio optimization under a partially observed jump-diffusion model, Prepublications de l,Equipe d’Analyse et probabilitie’s 2010. Google Scholar
[6] S. S. Kim, A study on the relationship between volume of corporate web news and stock prices, Master’s Thesis, KAIST, 2011. Google Scholar
[7] S. S. Kwon and J. H. Lee, The function of intraday implied volatility in the KOISP200 options, Asia-Pacific J. of Financial Studies (2008), 913–948. Google Scholar
[8] S. KumarF J. Morstatter and H. Liu, Twitter Data Analysis, Springer, August 19, 2013 Google Scholar
[9] X. Liang, Mining associations between web stock news volumes and stock prices, International Journal of Systems Science 37 (13) (2006), 919–930. Google Scholar
[10] C. Lindberg, Portfolio optimization and statistics in stochastic volatility markets, Thesis for Doctor of Philosophy, Chalmers Univ. Goteborg, Sweden, 2005 Google Scholar
[11] D. H. Lee, H. G. Kang and C. M. Lee, Autocorrelation analysis of the sentiment with stock information appearing on gig-data, 한국금용공학회 학술발표논문집 2013, 282–304. Google Scholar
[12] J. Oh, Multi-type financial asset models for portfolio construction, J. KSIAM 14 (4) (2010), 211–224. Google Scholar
[13] C. Park, L. Le, J. S. Marron, J. Park, V. Pipiras, F. D. Smith, R. L. Smith, M. Trovero and Z. Zhu, Long range dependence analysis of internet traffic, Journal of Applied Statistics 38 (7) (2011), 1407–1433. Google Scholar
[14] B. L. S. Prakasa Rao, Self-similar processes, fractional Brownian motion and statistical inference, A Festschrift for Herman Rubin Institute of Math. Statistics Lecture Notes - Monograph Series V. 45, 98–124, 2004 Google Scholar
[15] P. Protter, Stochastic Integration and Differential Equations, Berlin Heidelberg N.Y., Springer, 2nd Printing, 1992 Google Scholar
[16] S. A. Ross, Information and volatility: The no-arbitrage martingale approach to timing and resolution irrelevancy, J. of Finance 44 (1) (1989), 1–18. Google Scholar
[17] W. Sun, S. Rachev, F. J. Fabozzi and P. S. Kalev, Fractals in trade dulation: Capturing long-range dependence and heavy tailednes in modeling trade duration, Annals of Finance 4 (2008), 217–241. Google Scholar