Saturation assumptions for a 1d convection-diffusion model
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] B. Achchab, S. Achchab and A. Agouzal, Hierarchical robust a posteriori error estimator for a singularly perturbed problem, C. R. Acad. Sci. Paris, Ser. I 336 (2003), 95–100. Google Scholar
[2] R. E. Bank, A simple analysis of some a posteriori error estimates, Applied Numer. Math. 26 (1998), 153–164. Google Scholar
[3] R. E. Bank and R. K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30 (1993), no. 4, 921–935. Google Scholar
[4] R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), 285–301. Google Scholar
[5] W. D ̈orfler, R. H. Nochetto, Small data oscillation implies the saturation as- sumption, Numer. Math. 91, (2002), 1–12. Google Scholar
[6] A. D. Rossi, Saturation assumption and finite element method for a one- dimensional model, RGMIA research report collection 5 (2) (2002), 361–366. Google Scholar
[7] H. Yserentant, Hierarchical bases, Proc. ICIAM 91, ed. by R. O’malley, SIAM Philadelphia (1992), 256–276. Google Scholar