Insertion-of-Factors-Property with factors nilpotents
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), 3128–3140. Google Scholar
[2] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473. Google Scholar
[3] H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363–368. Google Scholar
[4] G.M. Bergman, Coproducts and some universal ring constructions, Tran. Amer. Math. Soc. 200 (1974), 33–88. Google Scholar
[5] G.M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1–32. Google Scholar
[6] K.R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979). Google Scholar
[7] C. Huh, H.K. Kim, Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), 37–52. Google Scholar
[8] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative ring, Comm. Algebra 30 (2002), 751-761. Google Scholar
[9] Y.C. Jeon, H.K. Kim, Y. Lee, J.S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), 135–146. Google Scholar
[10] D.W. Jung, N.K. Kim, Y. Lee, S.P. Yang, Nil-Armendariz rings and upper nil-radicals, Internat. J. Math. Comput. 22 (2012), 1250059 (1–13). Google Scholar
[11] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477–488. Google Scholar
[12] N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207–223. Google Scholar
[13] G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), 2113–2123. Google Scholar
[14] L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71–73. Google Scholar
[15] M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14–17. Google Scholar
[16] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43–60. Google Scholar