Change of scale formulas for function space integrals related with Fourier-Feynman transform and convolution on $C_{a,b}[0,T]$
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] R.H. Cameron, The translation pathology of Wiener space, Duke Math. J. 21 (1954), 623–628. Google Scholar
[2] R.H. Cameron and W.T. Martin, The behavior of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), 130– 137. Google Scholar
[3] R.H. Cameron and D.A. Storvick, An L2 analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1–30. Google Scholar
[4] R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, in Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer-Verlag, (1980), 18–67. Google Scholar
[5] R.H. Cameron and D.A. Storvick, Change of scale formulas for Wiener integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero 17 (1987), 105–115. Google Scholar
[6] R.H. Cameron and D.A. Storvick, Relationships between the Wiener integral and the analytic Feynman integral, Supplemento ai Rendiconti del Circolo Matem- atico di Palermo, Serie II-Numero 17 (1987), 117–133. Google Scholar
[7] S.J. Chang and J.G. Choi, Multiple Lp analytic generalized Fourier-Feynman transform on the Banach algebra, Commun. Korean Math. Soc. 19 (2004), 93– 111. Google Scholar
[8] S.J. Chang, J.G. Choi and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), 2925–2948. Google Scholar
[9] S.J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transform. Spec. Funct. 14 (2003), 375– 393. Google Scholar
[10] T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661–673. Google Scholar
[11] T. Huffman, C. Park and D. Skoug, Convolutions and Fourier-Feynman trans- forms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247–261. Google Scholar
[12] G.W. Johnson and D.L. Skoug, An Lp analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103–127. Google Scholar
[13] G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157–176. Google Scholar
[14] B.J. Kim, B.S. Kim and I. Yoo, Change of scale formulas for Wiener integrals related with Fourier-Feynman transform and convolution, J. Function Spaces 2014 (2014), 1–7. Google Scholar
[15] J. Yeh, Convolution in Fourier-Wiener transform, Pacific J. Math. 15 (1965), 731–738. Google Scholar
[16] J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, Inc., New York, 1973. Google Scholar
[17] I. Yoo, B.J. Kim and B.S. Kim, A change of scale formula for a function space integrals on Ca,b[0, T ], Proc. Amer. Math. Soc. 141 (2013), 2729–2739. Google Scholar
[18] I. Yoo and D. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces, Internat. J. Math. Math. Sci. 17 (1994), 239–248. Google Scholar
[19] I. Yoo and D. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces II, J. Korean Math. Soc. 31 (1994), 115–129. Google Scholar
[20] I. Yoo, T.S. Song and B.S. Kim, A change of scale formula for Wiener integrals of unbounded functions II, Commun. Korean Math. Soc. 21 (2006), 117–133. Google Scholar
[21] I. Yoo, T.S. Song, B.S. Kim and K.S. Chang, A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), 371–389. Google Scholar