Dirichlet boundary value problem for a class of the noncooperative elliptic system
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] A. Ambrosetti and G. Prodi, On the inversion of some differential mappings with singularities between Banach spaces, Ann. Mat. Pura. Appl. 93 (1972), 231–246. Google Scholar
[2] K. C. Chang, Ambrosetti-Prodi type results in elliptic systems, Nonlinear Anal- ysis TMA. 51 (2002), 553–566. Google Scholar
[3] D. G. de Figueiredo, Lectures on boundary value problems of the Ambrosetti- Prodi type, 12 Semin ario Brasileiro de An alise, 232-292 (October 1980). Google Scholar
[4] D. G. de Figueiredo, On the superlinear Ambrosetti-Prodi Problem, MRC Tech. Rep 2522, May, (1983). Google Scholar
[5] D. G. de Figueiredo and Y. Jianfu, Critical superlinear Ambrosetti-Prodi prob- lems, Top. Methods in Nonlinear Analysis, 14 (1) (1999), 59–80. Google Scholar
[6] A. M. Micheletti and C. Saccon, Multiple nontrivial solutions for a floating beam equation via critical point theory, J. Differential Equations 170 (2001), 157–179. Google Scholar
[7] D. C. de Morais Filho, A Variational approach to an Ambrosetti-Prodi type problem for a system of elliptic equations, Nonlinear Analysis, TMA. 26 (10) (1996), 1655–1668. Google Scholar