A boundary control problem for vorticity minimization in time-dependent 2D Navier-Stokes equations
Main Article Content
Abstract
Article Details
References
[1] F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, 1 (1990), 303–325. Google Scholar
[2] A. Buffa, M. Costabel, and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains, J. Math. Anal. Appl., 276 (2002), 845–867. Google Scholar
[3] P. Constantin and I. Foias, Navier-Stokes equations, The University of Chicago Press, Chicago (1989). Google Scholar
[4] R. Dautray and J.-L. Lions, Analysis and Numerical Methods for Science and Technology, Vol 2, Springer-Verlag, New York (1993). Google Scholar
[5] A. V. Fursikov, M. D. Gunzburger, and L. S. Hou, Boundary vlue problems and optimal boundary control for the Navier-Stokes system: The two- dimensional case, SIAM J. Cont. Optim., 36 (3) (1998), 852–894. Google Scholar
[6] V. Girault and P. Raviart, The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, New York (1986). Google Scholar
[7] M. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with boundary control, SIAM J. Cont. Optim., 39 (2) (2000), 594–634. Google Scholar
[8] Hongchul Kim and Oh-Keun Kwon, On a vorticity minimization problem for the stationaary 2D Stokes equations, J. Korean Math. Soc., 43 (1) (2006), 45–63. Google Scholar
[9] Hongchul Kim and Seon-Kyu Kim, A bondary control problem for the time- dependent 2D Navier-Stokes equations, Korean J. Math., 16 (1) (2008), 57–84. Google Scholar
[10] O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Goldon and Breach, New York (1963). Google Scholar
[11] J.-L. Lions, Quelques m ethodes de r esolution des probl`emes aux limites non lin eaires, Dunod, Paris (1968). Google Scholar
[12] R. E. Showalter, Hilbert space methods for partial differential equations, Elec- tronic Monographs in Differential Equations, San Marcos, Texas (1994). Google Scholar
[13] R. Temam, Navier-Stokes equation, Theory and Numerical Analysis, Elsevier Science Publishes B.V., Amsterdam (1984). Google Scholar