On a ring property generalizing power-Armendariz and central Armendariz rings
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] N. Agayev, G. Gu ̈ngo ̈rog ̆lu, A. Harmanci, S. Haliciog ̆lu, Central Armendariz rings, Bull. Malays. Math. Sci. Soc. 34 (2011), 137–145. Google Scholar
[2] N. Agayev, T. Ozen, A. Harmanci, On a Class of semicommutative rings, Kyung- pook Math. J. 51 (2011), 283–291. Google Scholar
[3] D.D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Al- gebra 26 (1998), 2265–2272. Google Scholar
[4] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), 3128–3140. Google Scholar
[5] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473. Google Scholar
[6] H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363–368. Google Scholar
[7] G.M. Bergman, Coproducts and some universal ring constructions, Tran. Amer. Math. Soc. 200 (1974), 33–88. Google Scholar
[8] G.M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1–32. Google Scholar
[9] G.F. Birkenmeier, J.Y. Kim and J.K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), 470–473. Google Scholar
[10] W.E. Clark, Twisted matrix units semigroup algebras, Duke. Math. J. 34 (1967), 417–423. Google Scholar
[11] K.R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979). Google Scholar
[12] K.R. Goodearl, R.B. Warfield, JR., An Introduction to Noncommutative Noe- therian Rings, Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney (1989). Google Scholar
[13] J. Han, T.K. Kwak, C.I. Lee, Y. Lee, Y. Seo, Ring properties in relation to powers, (submitted). Google Scholar
[14] I. N. Herstein, A theorem on rings, Canad. J. Math. 5 (1953), 238–241. Google Scholar
[15] C. Huh, Y. Lee, A note on π-regular rings, Kyungpook Math. J. 38 (1998), 157–161. Google Scholar
[16] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative ring, Comm. Algebra 30 (2002), 751–761. Google Scholar
[17] D.W. Jung, N.K. Kim, Y. Lee, S.P. Yang, Nil-Armendariz rings and upper nilradicals, Internat. J. Math. Comput. 22 (2012), 1250059 (1–13). Google Scholar
[18] I. Kaplansky, A theorem on division rings, Canad. J. Math. 3 (1951), 290–292. Google Scholar
[19] I. Kaplansky, Rings of Operators, W.A. Benjamin, Inc., New York, 1968. Google Scholar
[20] N.K. Kim, K.H. Lee and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), 2205–2218. Google Scholar
[21] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477–488. Google Scholar
[22] N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207–223. Google Scholar
[23] T.K. Kwak, Y. Lee, Rings over which coefficients of nilpotent polynomials are nilpotent, Internat. J. Algebra Comput. 21 (2011), 745–762. Google Scholar
[24] N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications, Vol. 37. Revised edition American Mathematical Society, Providence, R.I. 1964. Google Scholar
[25] D.W. Jung, N.K. Kim, Y. Lee, S.P. Yang, Properties of K-rings and rings satisfying similar conditions, Internat. J. Math. Comput. 21 (2011), 1381–1394. Google Scholar
[26] Z. Liu, R. Zhao, On Weak Armendariz Rings, Comm. Algebra 34 (2006), 2607–2616. Google Scholar
[27] M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14–17. Google Scholar