Approximate additive mappings in $2$-Banach spaces and related topics: revisited
Main Article Content
Abstract
W. Park [J. Math. Anal. Appl. 376 (2011) 193–202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper.
In this paper, we correct the statements of these results and prove the corrected theorems.
Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic func- tional equation in 2-Banach spaces under the original given condi- tions.
Article Details
References
[1] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960. Google Scholar
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941) 222–224. Google Scholar
[3] S. G ̈ahler, 2-metrische R ̈aume und ihre topologische Struktur, Math. Nachr. 26 (1963) 115–148. Google Scholar
[4] S. G ̈ahler, Lineare 2-normierte R ̈aumen, Math. Nachr. 28 (1964) 1–43. Google Scholar
[5] W.-G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011) 193–202. Google Scholar
[6] S. G ̈ahler, U ̈ber 2-Banach-R ̈aume, Math. Nachr. 42 (1969) 335–347. Google Scholar
[7] A. White, 2-Banach spaces, Doctorial Diss., St. Louis Univ., 1968. Google Scholar
[8] A. White, 2-Banach spaces, Math. Nachr. 42 (1969) 43–60. Google Scholar