Pointwise behavior of the potential in anomalous localized resonance: A numerical study
Main Article Content
Abstract
Article Details
References
[1] H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann-poincare -type operator and analysis of cloaking due to anomalous localized resonance, Arch. Rational Mech. Anal. 208 (2013), 667-692. Google Scholar
[2] H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Anomalous localized resonance using a folded geometry in three dimensions, Proc. R. Soc. A 469 (2013), 20130048. Google Scholar
[3] H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann-Poincare -type operator and analysis of anomalous localized resonance II, Contemporary Math. 615 (2014), 1-14. Google Scholar
[4] O.P. Bruno and S. Lintner, Superlens-cloaking of small dielectric bodies in the quasi-static regime, J. Appl. Phys. 102 (2007), 124502. Google Scholar
[5] D. Chung, H. Kang, H. Lee, K. Kim and H. Lee, Cloaking due to anomalous localized resonance in plasmonic structures of confocal ellipses, (2014). Google Scholar
[6] R.V. Kohn, J. Lu, B. Schweizer and M.I. Weinstein, A variational perspective on cloaking by anomalous localized resonance, Commun Math Phys 328 (2014), 1–27. Google Scholar
[7] G.W. Milton and N.-A.P. Niorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A 462 (2006), 3027–3059. Google Scholar
[8] G.W. Milton, N.-A.P. Nicorovici, R.C. McPhedran, Opaque perfect lenses, Phys- ica B 394 (2007), 171–175. Google Scholar
[9] G.W Milton, N.-A.P. Nicorovici, R.C. McPhedran and L.C. Botten, Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous reso- nance, Optics Express 15 (2007), 6314–6323. Google Scholar