Korean J. Math. Vol. 23 No. 3 (2015) pp.401-408
DOI: https://doi.org/10.11568/kjm.2015.23.3.401

Maximum Zagreb indices in the class of $k$-apex trees

Main Article Content

Tsend-Ayush Selenge
Batmend Horoldagva

Abstract

The first and second Zagreb indices of a graph $G$ are defined as $M_1(G)=\sum_{v\in V} d_G(v)^2$ and $M_2(G)=\sum_{uv\in E(G)}d_G(u)\,d_G(v)\,,$ where $d_G(v)$ is the degree of the vertex $v$. $G$ is called a $k$-apex tree if $k$ is the smallest integer for which there exists a subset $X$ of $V(G)$ such that $|X|=k$ and $G-X$ is a tree. In this paper, we determine the maximum Zagreb indices in the class of all $k$-apex trees of order $n$ and characterize the corresponding extremal graphs.


Article Details

Supporting Agencies

This work is supported by the Korea Foundation for Advanced Studies’ Interna- tional Scholar Exchange Fellowship for the academic year of 2014–2015.

References

[1] B. Borovicanin and T.A. Lampert, On the maximum and minimum Zagreb in- dices of trees with a given number of vertices of maximum degree, MATCH Commun. Math. Comput. Chem. 74 (2015), 81–96. Google Scholar

[2] K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004), 103–112. Google Scholar

[3] K.C. Das, I. Gutman and B. Horoldagva, Comparison between Zagreb indices and Zagreb coindices, MATCH Commun. Math. Comput. Chem. 68 (2012), 189–198. Google Scholar

[4] B. Furtula, I. Gutman and S. Ediz, On difference of Zagreb indices, Discrete Appl. Math. 178 (2014), 83–88. Google Scholar

[5] I. Gutman and K.C. Das, The first Zagreb indices 30 years after, MATCH Com- mun. Math. Comput. Chem. 50 (2004), 83–92. Google Scholar

[6] I. Gutman, B. Furtula, ZV.K. Vuki cevi c and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015), 5-16. Google Scholar

[7] I. Gutman, B. RuVsVci c and N. Trinajsti c, C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405. Google Scholar

[8] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535– 538. Google Scholar

[9] P. Hansen and D. VukiVcevi c, Comparing the Zagreb indices, Croat. Chem. Acta. 80 (2007), 165-168. Google Scholar

[10] B. Horoldagva and K.C. Das, On comparing Zagreb indices of graphs, Hacet. J. Math. Stat. 41 (2012), 223–230. Google Scholar

[11] B. Horoldagva and K.C. Das, Sharp lower bounds for the Zagreb indices of uni-cyclic graphs, Turk. J. Math. 39 (2015), 595–603. Google Scholar

[12] B. Horoldagva and S.-G. Lee, Comparing Zagreb indices for connected graphs, Discrete Appl. Math. 158 (2010), 1073–1078. Google Scholar

[13] M. MilVosevi c, T. R eti and D. Stevanovi c, On the constant difference of Zagreb indices, MATCH Commun. Math. Comput. Chem. 68 (2012), 157-168. Google Scholar

[14] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley– VCH, Weinheim, 2000. Google Scholar

[15] K. Xu, J. Wang and H. Liu, The Harary index of ordinary and generalized quasi-tree graphs, J. Appl. Math. Comput. 45 (2014), 365–374. Google Scholar

[16] K. Xu, J. Wang, K.C. Das and S. Klavˇzar, Weighted Harary indices of apex trees and k-apex trees, Discrete Appl. Math. 189 (2015), 30–40. Google Scholar