The jeu de taquin on the shifted rim hook tableaux
Main Article Content
Abstract
Article Details
References
[1] E. A. Bender and D. E. Knuth, Enumeration of plane partitions, J. Combin. Theory (A) 13 (1972), 40–54. Google Scholar
[2] A. Garsia and S. Milne, A Rogers-Ramanujan bijection, J. Combin. Theory (A) 31 (1981), 289–339. Google Scholar
[3] C. Greene, An extension of Schensted’s theorem, Adv. in Math., 14 (1974), 254–265. Google Scholar
[4] D. E. Knuth, Permutations, matrices and generalized Young tableaux, Pacific J. Math., 34 (1970), 709–727. Google Scholar
[5] G. de B. Robinson, On the representations of the symmetric group , Amer. J. Math., 60, (1938), 745–760. Google Scholar
[6] B. E. Sagan, Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), 62–103. Google Scholar
[7] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math., 13 (1961), 179–191. Google Scholar
[8] J. R. Stembridge, Shifted tableaux and projective representations of symmetric groups, Advances in Math., 74 (1989), 87–134. Google Scholar
[9] D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux, J. Combin. Theory Ser. A 40 (1985), 211–247. Google Scholar
[10] M. P. Schu ̈tzenberger, Quelques remarques sur une construction de Schensted, Math., Scand. 12 (1963), 117–128. Google Scholar
[11] G. Viennot, Une forme g eom etrique de la correspondance de Robinson- Schensted, in Combiatoire et Repr esentation du Groupe Sym etrique, D. Foata ed., Lecture Notes in Math., Vol. 579, Springer-Verlag, New York, NY, 1977, 29-58. Google Scholar