Scientific understanding of the anisotropic universe in the warped products spacetime for aerospace power
Main Article Content
Abstract
Article Details
Supporting Agencies
References
[1] J. K. Beem, P. E. Ehrlich and K. Easley, Global Lorentzian Geometry (Marcel Dekker Pure and Applied Mathematics, New York, 1996. Google Scholar
[2] J. Choi, Multiply warped products with nonsmooth metrics, J. Math. Phys. 41 (2000), 8163–8169. Google Scholar
[3] S.T. Hong, J. Choi and Y.J. Park, (2+1) dimensional black holes in warped products, Gen. Rel. Grav. 35 (2003). Google Scholar
[4] J. Choi and S.T. Hong, Warped product approach to universe with non-smooth scale factor, J. Math. Phys. 45 (2004), 642. Google Scholar
[5] S.T. Hong, J. Choi and Y.J. Park, Local free-fall temperature of Gibbons-Maeda- Garfinkle-Horowitz-Strominger black holes Nonlinear Analysis 63, e493 (2005). Google Scholar
[6] J. Demers, R. Lafrance, and R.C. Meyers, Black hole entropy without brick walls, Phys. Rev. D 52, 2245–2253 (1995). Google Scholar
[7] A. Ghosh and P. Mitra, Entropy for extremal Reissner-Nordstrom black holes, Phys. Lett. B 357, 295–299 (1995). Google Scholar
[8] S.P. Kim, S.K. Kim, K.S. Soh and J.H. Yee, Remarks on renormalization of black hole entropy, Int. J. Mod. Phys. A 12 (1997), 5223–5234. Google Scholar
[9] G. Cognola and P. Lecca, Electromagnetic fields in Schwarzschild and Reissner- Nordstrom geometry, Phys. Rev. D 57 (1998), 1108–1111. Google Scholar
[10] D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991), 3140. Google Scholar
[11] G.W. Gibbons and K. Maeda, Black holes and membranes in higher-dimensional theories with dilaton fields, Nucl.Phys. B 298 (1988), 741. Google Scholar
[12] A.H. Guth, Inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981), 347–356. Google Scholar
[13] R. Kantowski and R.K. Sachs, Some spatially homogeneous anisotropic relativis- tic cosmological models, J. Math. Phys. 7 (1966), 443. Google Scholar
[14] J. Khoury, B.A. Ovrut, N. Seiberg, P.J. Steinhardt and N. Turok, From big crunch to big bang, Phys. Rev. D 65 (2002), 086007. Google Scholar
[15] H. Reissner, U ̈ber die eigengravitation des elektrischen felds nach der Einstein- shen theorie, Ann. Phys. 50 (1916), 106–120. Google Scholar
[16] G. Nordstr ̈om, On the energy of the gravitational field in Einstein’s theory, Proc. Kon. Ned. Akda. Wet. 20 (1918), 1238–1245. Google Scholar
[17] R. M. Wald, General Relativity University of Chicago Press, Chicago, 1984. Google Scholar