Korean J. Math. Vol. 24 No. 1 (2016) pp.41-49
DOI: https://doi.org/10.11568/kjm.2016.24.1.41

The Hyers-Ulam stability of a quadratic functional equation with involution in paranormed spaces

Main Article Content

Chang Il Kim
Chang Hyeob Shin

Abstract

In this paper, using fixed point method, we prove the Hyers-Ulam stability of the following functional equation
\begin{eqnarray*}
& &f(x+y+z)+f(\sigma(x)+y+z)+f(x+\sigma(y)+z)+f(x+y+\sigma(z))\\
&=&4f(x)+4f(y)+4f(z)
\end{eqnarray*}
with involution in paranormed spaces.



Article Details

References

[1] B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the generalized Hyers- Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12 (2) (2007), 247–262. Google Scholar

[2] B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the Hyers-Ulam stability of approximately pexider mappings, Math. Ineqal. Appl. 11 (2008), 805–818. Google Scholar

[3] S. Czerwik, Functional equations and Inequalities in several variables, World Google Scholar

[4] Scientific, New Jersey, London, 2002. Google Scholar

[5] J. B. Diaz, Beatriz Margolis A fixed point theorem of the alternative, for contractions on a generalized complete metric space Bull. Amer. Math. Soc. 74 (1968), 305–309. Google Scholar

[6] H. Fast, Sur la Convergence statistique, Colloq. Math. 2 (1951), 241–244. Google Scholar

[7] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143–190. Google Scholar

[8] D. H. Hyers, On the stability of linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224. Google Scholar

[9] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of functional equations in several variables, Birkh ̈auser, Boston, 1998. Google Scholar

[10] D. H. Hyers, T. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125–153. Google Scholar

[11] G. Isac, Th. M. Rassias, Stability of ψ-additive mappings: Applications to non-linear analysis, Internat. J. Math. & Math. Sci. 19 (1996), 219-228. Google Scholar

[12] S. M. Jung, Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008. Google Scholar

[13] S. M. Jung, On the Hyers-Ulam stability of the functional equation that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126–137. Google Scholar

[14] E. Kolk, The statistical convergence in Banach spaces, Tartu Ul. Toime. 928 (1991), 41–52. Google Scholar

[15] M. S. Moslehian, T. M. Rassias, Stability of functional equations in non-Archimedean spaces, Applicable Analysis and Discrete Mathematics, 1 (2007), 325–334. Google Scholar

[16] M. S. Moslehian, GH. Sadeghi, Stability of two types of cubic functional equations in non-Archimedean spaces, Real Analysis Exchange 33 (2) (2007/2008), 375– 384. Google Scholar

[17] F. Skof, Approssimazione di funzioni δ-quadratic su dominio restretto, Atti. Ac cad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 118 (1984), 58–70. Google Scholar

[18] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74. Google Scholar

[19] H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144–172. Google Scholar

[20] S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960. Google Scholar